UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA QUÍMICA

DISEÑO Y CONSTRUCCIÓN DE UN REACTOR EXPERIMENTAL TIPO FILTRO PRENSA PARA OBTENCIÓN ELECTROLÍTICO DE ZINC A PARTIR DE SULFURO POLIMETÁLICO (BLENDA)

Por:

EDWIN LOPEZ MOYA

Modalidad de graduación: "Investigación Aplicada" presentado a consideración de la "UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en Ingeniería Química.

Septiembre de 2018

Tarija-Bolivia

M.Sc. Ing. Ernesto Álvarez Gozálvez DECANO FAC. CS. Y TECN.

Lic. Elizabeth Castro Figueroa VICEDECANA FAC. CS. Y TECN.

APROBADO POR:

TRIBUNAL:

M.Sc. Ing. Ignacio E. Velásquez Soza

M.Sc. Ing. René E. Michél Cortés

Ing. Alberto Sossa Morales

V°B°

El tribunal calificador del presente trabajo, no se solidariza con la forma, términos, modos y expresiones vertidas en el mismo, siendo éstas responsabilidad del autor.

A mis abuelos Luís Moya (†) y Pedro Lopez (†) ex mineros, quienes me transmitieron y enseñaron, a enfrentar los obstáculos de la vida; con constante esfuerzo y sabiduría.

A mis padres terrenales Bernardino Lopez Isla y Victoria Moya Santos por su apoyo constante, su gran amor y paciencia, ya que sin ellos sería un galeón sin timón, en este maravilloso mundo.

...voluntad digno, esfuerzo propio hacen dueño de ti mismo, un hombre avaluado; con preciado conocimiento y sabiduría...

NDICE

Página

Advertencia	i
Dedicatoria	ii
Agradecimiento	iii
Pensamiento	iv
Resumen	V

INTRODUCCIÓN

Antecedentes	1
Justificación	3
Objetivos	7
Objetivo General	7
Objetivos específicos	7

CAPÍTULO I

MARCO TEÓRICO

1. Consideraciones teóricas	8
1.1Fundamentos de electroquímica	8
1.2. Termodinámica de los procesos electroquímicos	9
1.2.1. Potencial y corriente	9
1.2.2. Electrodos y celda en equilibrio	10
1.3 Leyes de Faraday	12
1.4 Cinética de los procesos electroquímicos	13
1.5 Mecanismos de transporte	15
1.5.1 Control por transferencia de masa	15
1.5.2 Control por transferencia de carga	17
1.6 Tecnología de los Reactores Electroquímicos	18
1.6.1 Reactores experimentales de macroelectrólisis	18
1.6.2 Parámetros operacionales de los reactores electroquímicos	19

1.6.3 Propiedades de los reactores electroquímicos	20
1.7 Reactor de flujo pistón	21
1.7.1 Modelo matemático para un reactor de flujo pistón con recirculación	22
1.8 Flujo a través de una sección rectangular	23
1.9 Membranas de intercambio iónico	27
1.10 El zinc	29
1.10.1 El proceso electrolítico de obtención de zinc	30
1.10.2 Extracción de mineral	32
1.10.3 Molienda	32
1.10.4 Lixiviación atmosférica	33
1.10.5 Neutralización	34
1.10.6 Separación sólido - líquido	34
1.10.7 Purificación y concentración de la solución	35
1.10.8 Electrólisis	35

CAPÍTULO II

PARTE EXPERIMENTAL

2.1 Descripción y caracterización de la materia prima	37
2.2 Descripción del método de investigación	38
2.3 Diseño del prototipo experimental	41
2.3.1 Preparación de la solución electrolítica	41
2.3.2 Diseño preliminar de la celda	46
2.3.2.1 Parámetros característicos de los compartimentos de la celda	46
2.3.2.2 Dimensionamiento de la placa distribuidor de flujo	47
2.3.4 Electrodo o material catalítico	47
2.4 Materiales utilizados para la construcción del prototipo	48
2.4.1 Material de los compartimentos y el distribuidor de flujo	48
2.4.2 Material de electrodos	49
2.4.3 Material de membrana	50
2.5 Instalación eléctrica	51

2.6 Diseño factorial del experimento	53
-	
2.6.1 Factores en estudio	53

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1 Resultados obtenidos	.55
3.2 Análisis del funcionamiento del reactor	.57
3.3 Análisis de las principales variables que influyen en el reactor	.61
3.4 Calidad del producto obtenido del reactor experimental	.64
3.4 Análisis estadístico del diseño factorial	.65
3.4.1 Análisis de la varianza	.65
3.4.2 Análisis de regresión	.68
3.5 Diseño definitivo del reactor	.70
3.5.1 Cálculo de las dimensiones internas de los compartimentos de la celda	.71
3.5.2 Cálculo de los parámetros geométricos característicos	.72
3.5.3 Cálculo de dimensiones de la placa distribuidor de flujo	.73
3.6 Especificaciones técnicas del reactor experimental	.77

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1Conclusiones	83
4.2 Recomendaciones	84
Referencias bibliográficas	85

ÍNDICE DE TABLAS

Página

Tabla I-1 Potenciales de electrodo estándar11
Tabla I-2 Coeficientes de difusión de electrolitos a diferentes concentraciones16
Tabla I-3 Densidades de corriente de intercambio 17

Tabla I-4 Clasificación de los reactores electroquímicos20
Tabla I-5 Reactores electroquímicos según modo de operación21
Tabla I-6 Grupos adimensionales utilizados en transporte de materia25
Tabla I-7 Correlaciones de números adimensionales 25
Tabla I-8 Coeficiente de descarga para platos perforados y boquillas27
Tabla I-9 Fuerza impulsora de transporte a través de membranas28
Tabla I-10 Tamaños típicos de menas para lixiviación32
Tabla I-11 Métodos de lixiviación
Tabla I-12 Impurezas en la disolución de lixiviación del zinc
Tabla II-1 Descripción y características físicas de Sulfuro Polimetálico38
Tabla II-2 Cuantificación Química del Sulfuro Polimetálico (Blenda)38
Tabla II-3 Condiciones para la preparación de la solución electrolítica41
Tabla II-4 Características fisicoquímicas de la solución electrolítica45
Tabla II-5 Datos preliminares de diseño de la celda46
Tabla II-6 Dimensiones internas de los compartimentos de la celda46
Tabla II-7 Parámetros geométricos de los compartimentos de la celda47
Tabla II-8 Dimensionamiento del distribuidor de flujo de la celda47
Tabla II-9 Propiedades fisicoquímicas de Politetrafluroetileno49
Tabla II-10 Características fisicoquímicas del electrodo de trabajo49
Tabla II-11 Características fisicoquímicas del contra electrodo50
Tabla II-12 Características de la membrana de intercambio catiónico50
Tabla II-13 Factores de diseño en estudio 53
Tabla II-14 Matriz de diseño con unidades codificadas de los factores en estudio53
Tabla II-15 Diseño factorial 2^3 con niveles operativos de los factores y su réplica54
Tabla III-1 Resultados obtenidos de cada combinación y su respectiva réplica56
Tabla III-2 Resultados obtenidos de la aplicación del reactor experimental que
representa mayor eficiencia58
Tabla III-3 Coeficiente de transferencia de masa61
Tabla III-4 Resultado del análisis del zinc electrolítico obtenido64
Tabla III-5 Datos con unidades codificadas de los factores de entrada y el valor

de variable respuesta para el análisis de varianza65
Tabla III-6 Factores inter-sujetos
Tabla III-7 Análisis de varianza (ANOVA)
Tabla III-8 Variables introducidas para el análisis de regresión
Tabla III-9 Resumen del modelo de análisis de regresión
Tabla III-10 Análisis de varianza para el análisis de regresión69
Tabla III-11 Coeficientes del modelo matemático69
Tabla III-12 Datos experimentales para el diseño definitivo70
Tabla III-13 Dimensiones internos de los compartimentos de la celda para diseño
final71
Tabla III-14 Parámetros geométricos de los compartimentos de la celda para diseño
final73
Tabla III-15 Dimensionamiento del distribuidor de flujo de la celda para diseño final
Tabla III-16 Especificaciones del reactor experimental tipo filtro prensa para
obtención electrolítico de zinc77
Tabla III-17 Análisis económico del proyecto 79

ÍNDICE DE FIGURAS

Página

Figura 1-1 Sobrepotencial de evolución de hidrógeno en diferentes materiales	
catódicos	14
Figura 1-2 Escala de la tecnología electroquímica	18
Figura 1-3 Proceso electroquímico con recirculación	22
Figura 1-4 Flujo a través de una sección rectangular	23
Figura 1-5 Caída de presión para flujo canal	.24
Figura 1-6 Membrana de intercambio iónico	.29
Figura 1-7 Diagrama de flujo del proceso electrolítico de obtención de zinc	.31
Figura 2-1 Ubicación geográfica del yacimiento de sulfuro polimetálico	37
Figura 2-2 Descripción de Sulfuro Polimetálico (Blenda)	37

Figura 2-3 Diagrama Flujo de Proceso (DFP) del sistema experimental39
Figura 2-4 Diagrama de flujo que muestra la secuencia para determinar variables
respuesta40
Figura 2-5 Reactor INFORS para la disolución del metal de interés42
Figura 2-6 Diagrama de predominancia Eh - pH del sistema Zn - H ₂ O43
Figura 2-7 Diagrama de predominancia Eh - pH del sistema Fe - H ₂ O43
Figura 2-8 Diagrama de bloques preparación de la disolución electrolítica
Figura 2-9 Disolución electrolítico obtenido45
Figura 2-10 Compartimentos de la celda concluida51
Figura 2-11 Conexión eléctrica del sistema experimental52
Figura 2-12 Montaje del sistema experimental
Figura 3-1 Morfología depósitos obtenidos de los ensayos55
Figura 3-2 Funcionamiento del reactor experimental
Figura 3-3 Diagrama de contorno, perfil de concentración en función del potencial
medido y el tiempo59
Figura 3-4 Comparación de los perfiles de concentración60
Figura 3-5 Flujo hidrodinámico a través de una sección rectangular61
Figura 3-6 Coeficiente de transferencia de masa62
Figura 3-7 Densidad de corriente en función del sobre potencial catódico63
Figura 3-8 Zinc electrolítico obtenido
Figura 3-9 Gráfico normal de efecto estándar para Eficiencia de corriente67
Figura 3-10 Despiece del reactor experimental tipo filtro prensa de obtención
electrolítico de zinc

ÍNDICE DE ANEXOS

Página

NOMENCLATURA, ABREVIATURAS Y SIMBOLOGÍA UTILIZADA

Símbolos Latinos.

А	Área del electrodo [cm ²]				
A_e	Área específica del electrodo [cm ²]				
A_{t_d}	Área total de distribuidor [cm ²]				
a_i	Diámetro efectivo del ion [Å]				
а	Ancho del compartimento [cm]				
В	Base del compartimento [cm]				
CLIVAJE	Manera a dividirse cuando se aplica una fuerza sobre mineral				
C ₀	Concentración inicial [g/l]				
ct	Concentración a un intervalo de tiempo [g/l]				
C <i>S0</i> ²⁻	Concentración de sulfato [g/l]				
$C_{Zn^{2+}}$	Concentración de zinc [g/l]				
D _i	Coeficiente de difusión de la especie [cm ² /s]				
d _{or}	Diámetro de orificio [cm]				
E^0	Potencial estándar [V]				
E _e	Potencial de equilibrio o reversible [V]				
E_m	Potencial medido [V]				
F	Constante de Faraday, [96487 C /mol]				
HÁBITO	Forma o figura que el mineral adopta durante su formación.				
Ι	Corriente faradáica [mA]				
I _m	Corriente medido [mA]				
i	Densidad de corriente [mA/cm ²]				
k _n	Coeficiente de transferencia de masa [cm/s]				
L	Longitud del electrodo [cm]				
m	Masa faradáica [g]				
m _r	Masa real [g]				
m _t	Masa teórico [g]				

Nor	Número de orificios
<i>Nf</i> or	Número de fila de orificio
P_W	Eficiencia energética de la celda
Q	Flujo volumétrico [cm ³ /s]
RAYA	Finísimas partículas que muestran el color del mineral.
R	Resistencia eléctrica [Ω]
R	Constante Universal de los gases 8.31434 [J /mol K]
Т	Temperatura absoluta [K]
t	Tiempo [s]
u	Movilidad iónica de la especie [cm/s]
V _n	Potencial medido [V]
V	Volumen en el reactor [cm ³]
Vr	Volumen en el tanque receptor [cm ³]
V _f	Velocidad del fluido [cm/s]
V _{for}	Velocidad del fluido en orificios [cm/s]
W	Consumo energético [W]

Símbolos Griegos.

Actividad [mol/l]				
Coeficiente de transferencia de carga				
Potencial del metal [V]				
Factor de corrección geométrico				
Caída de presión en flujo canal [bar]				
Caída de presión en el distribuidor [bar]				
Coeficiente de actividad				
Sobre potencial [V]				
Eficiencia de corriente				
Viscosidad [g/cm s]				
Densidad del fluido [g/cm ³]				
Coeficiente de descarga				
Tiempo de residencia en el reactor [s]				
Tiempo de residencia en el tanque receptor [s]				

RESUMEN

La obtención de zinc metálico es un proceso muy importante en la industria minera, que demanda nuevas alternativas de investigación y aplicación de nuevas tecnologías, como un novedoso reactor; un elemento importante y característico en cualquier proceso químico, donde se efectúan cambios físicos y químicos.

Sin embargo, para el diseño de los reactores electroquímicos, los requerimientos no son iguales como para los reactores convencionales.

El conocimiento minucioso de datos fisicoquímicos, parámetros eléctricos y en particular la información de las velocidades de conversión de los reactivos y/o productos que interaccionan con la corriente eléctrica son características propias, para el desempeño eficiente de un reactor electroquímico.

La disolución electroquímica, factor importante para el procedimiento del diseño se prepara a partir de sulfuro polimetálico Blenda (ZnS), con una ley de 49,88 % de zinc procedente de la Provincia Modesto Omiste del departamento de Potosí; la concentración de zinc disuelto en la disolución electrolítica alcanza tenores altos de zinc, con una conductividad de $168,7\mu$ S/cm y grado de acidez de 0,47 pH.

Con la finalidad de obtener condiciones óptimas de operación y los mejores parámetros de diseño, se construye un prototipo en base a la escala tecnológica de los reactores electroquímicos; de tres compartimentos, un importante compartimento central que aloja al electrodo de trabajo con un volumen de 60 cm³, los compartimentos que alojan el contra electrodo presentan las mismas dimensiones.

El funcionamiento del reactor experimental tipo filtro prensa de obtención electrolítico de zinc, es operado en modo continuo con recirculación en un determinado periodo y el flujo de alimentación es el mismo en cada uno de los compartimentos que ingresa a través de un distribuidor de flujo específico y dimensionado según parámetros hidrodinámicos.

El potencial eléctrico aplicado se monitorea con un potencióstato y los mejores

parámetros de operación que son importantes para el diseño definitivo, son analizados de carácter estadístico con un intervalo de confianza del 95% de todas las variables solicitadas introducidas.

Según el análisis del funcionamiento del reactor donde intervienen los valores más significativos que representa los parámetros de diseño definitivo se obtiene una cantidad considerable de zinc electrolítico que alcanza el 65% de eficiencia de corriente con una pureza del 99,53%.

INTRODUCCIÓN

Antecedentes.

Actualmente la obtención de zinc metálico a partir de sulfuro polimetálico se lleva a cabo por procesos convencionales, tales como el proceso electrotérmico, la cementación u otros métodos.

En Bolivia no se emplea el sistema electrolítico para la obtención de zinc, la crisis económica que atravesó el país y la posterior promulgación del D.S. 21060 del año 1986 que llevó al cierre de industrias mineras, cuyo efecto se tradujo en la conversión de más cooperativas mineras que derivó en un trabajo y explotación tradicional de extracción sólo para el sustento. De tal manera que el avance tecnológico en el país resultó frustrado, pero siempre con la consigna de ser un país rico y que nuestros recursos naturales deben tener un valor agregado.

Sin embargo a lo largo del tiempo en países más industrializados, se han desarrollado distintos tipos de celdas o reactores electroquímicos para la obtención electrolítico de zinc, pero la información que se tiene sobre la obtención de zinc en reactores electroquímicos de tipo filtro prensa es muy escaso. Como referencia es significativo tomar en cuenta el trabajo previo en el que se destaca el conocido, en ese entonces, como reactor de electro-ultra filtración patentado en noviembre de 1893 cuya invención perteneciente al señor Paul Lion Hulin¹. Haciendo notar la proporcionalidad que debe respetarse entre la velocidad de filtración del electrolito a través del medio poroso y la intensidad de corriente eléctrica.

Generalmente los reactores electroquímicos de tipo filtro prensa están formados por un paquete de compartimentos, las cuales se integran formando en su conjunto la celda de electrólisis y los electrodos. Dichos compartimentos representan un sistema abierto, provisto de medios para el flujo de la solución electrolítica, alimentados por bombas centrífugas desde sus depósitos y eléctricamente conectado a una fuente de corriente eléctrica.

La condición mecánica que presenta los actuales reactores electroquímicos es la unión de las partes activas de la estructura de los electrodos a los correspondientes

¹ "Introducción a la ingeniería electroquímica" F. COEURET.

soportes; efectuándose dicha unión, eléctrica y mecánicamente de forma fija al soporte mediante soldadura a los espaciadores o relieves mecánicos. Estas uniones deben desensamblarse en caso de reactivar o sustituir el electrodo.

Este proceso de desensamblaje para reactivación o sustitución de los electrodos se realiza mediante procesos costosos como el fresado o taladrado.

Debido a los considerables costes asociados a la reactivación o sustitución de los electrodos, resulta interesante que las partes activas de los mismos estén conectados a los soportes mediante uniones desmontables.

Otros trabajos similares en lo que se refiere a reactores electroquímicos de tipo filtro prensa para múltiples aplicaciones es la publicación² de un reactor equipado con electrodo tridimensional de titanio corrugado donde se introduce soluciones de plata en medio de tiosulfato. Estas especies que tienen azufre son reducidas en el cátodo formando químicamente sulfuro de plata en solución con la diferencia que en esta celda no se genera depósito de plata por electro reducción.

No obstante, los diseños de reactores electroquímicos conocidos presentan diversos inconvenientes en lo referente a su adaptabilidad a cualquier tipo de procesos específicos.

A diferencia de los reactores electroquímicos convencionales, el diseño que se propone está orientado en lograr características apropiadas para el desempeño eficiente en lo que respecta a obtener zinc electrolítico, previo a un tratamiento hidrometalúrgico de un mineral polimetálico como es la esfalerita, también conocido como blenda (ZnS). Con una simplicidad en su construcción que todas sus partes se pueden sellar para evitar fugas y que presente versatilidad.

2

² Patente Internacional de EE.UU. 5536387 (Hill 1996).

Justificación.

El desarrollo de un país está directamente relacionado con su capacidad de trabajo, sus industrias, su riqueza natural y potencialmente el conocimiento. La importancia de la industria minera implica estudios alternativos de tecnologías novedosos que acompañe su potencialidad productora, particularmente en el área minera que caracteriza a Bolivia y sus regiones.

La producción de mineral de zinc a nivel mundial llega a más de trece millones de toneladas por año.

Principales países productores de mineral de zinc a nivel mundial.

Datos de: USGS, Artículo Comercial de Minerales, 2017.

Bolivia representa alrededor del 4% de la producción mundial de mineral de zinc.

El departamento de Potosí es el principal productor de mineral de zinc con el 86% del total, seguido por Oruro con el 7% y posteriormente La Paz con el 6%.

Principales departamentos productores de mineral de zinc en Bolivia.

*Fuente: Informes de producción de COMIBOL, Emp. Met. Vinto, Minería Mediana, SENARECOM. Elab. Ministerio de Minería y Metalurgia.*2017.

El metal producto de la refinación cumple diferentes usos satisfaciendo múltiples necesidades en la sociedad. De esta forma se fabrica una amplia gama de productos, desde juguetes moldeados hasta componentes para motores.

Fabricación de algunos productos finales.

Fuente: USGS, agencias de estadística oficial.2017.

El sorprendente uso del zinc en los últimos tiempos está dedicado a la batería modificada de celda seca para dispositivos de baja potencia.

De esta manera su impacto puede repercutir en diferentes aspectos.

Impacto social.

Un estudio experimental involucra diferentes aspectos, siendo de importancia común el conocimiento y mediante esto el aporte va centrado al fomento industrial de carácter viable en alcanzar un proceso efectivo en el cómo saber aprovechar la riqueza natural generando satisfacción en la necesidad social. En otras palabras el estudio experimental a escala laboratorio, permite conocer factores que guie de manera precisa para el desarrollo de nuevos emprendimientos con múltiples beneficios y su interacción con la sociedad misma.

Impacto tecnológico.

El proceso electrolítico desarrollado técnicamente desde hace años resulta ser un verdadero impulso para la industria del zinc. Las mayores instalaciones de zinc electrolítico en el mundo llegan a producir entre 300000 y 400000 toneladas³ por año de un zinc de calidad del 99.995 % lo cual se debe al estudio íntegro de su origen al manejo óptimo en cuanto a la operatividad control y a los avances en ingeniería de análisis aplicados a su diseño, ampliación, adaptación y mantenimiento en reactores electroquímicos.

Impacto ambiental.

El mayor problema inminentemente a la humanidad, es el medio ambiente. El peligro de disoluciones metálicos ha sido considerado con mayor intensidad en los últimos tiempos, esto debido a la severidad de las nuevas normas de contaminación de efluentes que están en vigor en países industrializados.

³ USGS sciencie for a changing world minerals information 2017.

Pero la contrariedad a esto y con la finalidad de resolver problemas consecuentes, es importante el estudio íntegro de un reactor novedoso, sin despreciar la eficiencia en lo que respecta a procesos químicos, particularmente adecuado y amigable con el medio ambiente.

Impacto económico.

El estudio e investigación de un novedoso reactor experimental de obtención electrolítico de zinc, lleva a conocer las expectativas que puede acontecer en un posterior fomento al emprendimiento a gran escala y de esta forma saber aprovechar la riqueza mineralógica y contribuir económicamente diversificando la oportunidad de industrialización del país y sus regiones.

Justificación personal.

El presente trabajo es de interés e importante de acuerdo a la percepción racional que conlleva al conocimiento previo y minucioso de los factores técnicos inherentes o relacionados a obtener un material con valor agregado a partir de un mineral polimetálico de zinc utilizando tecnologías alternativos como la hidroelectrometalurgia, donde el estudio específico apunta al corazón e importante elemento característico como el reactor electroquímico enfocado a su aplicación y que su aprovechamiento involucre un beneficio satisfactorio.

Objetivos del proyecto.

Objetivo general.

Diseñar y construir un reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.

Objetivos específicos.

- Caracterizar la materia prima para el diseño del reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.
- Diseñar y dimensionar el reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.
- Construir el reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.
- Analizar el funcionamiento en base a la evaluación del potencial de trabajo del reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.
- Determinar y analizar las principales variables que influyen en el reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.
- Caracterizar la calidad del producto obtenido del reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.

CAPÍTULO I MARCO TEÓRICO

1. Consideraciones teóricas.

Este apartado comprende partes importantes para el desarrollo en el cual se sostendrá el trabajo de investigación en base a la bibliografía existente.

Aspectos electroquímicos, reactores electroquímicos y el caso particular de *obtención electrolítica de zinc* como aplicación directa de dicho estudio.

1.1 Fundamentos de Electroquímica.

La electroquímica es una rama de la química física en la que se estudia las leyes de interacción y correlación entre los fenómenos químicos y eléctricos.

Su estudio es fundamental para comprender numerosos procesos que tienen lugar en los electrodos durante el paso de una corriente eléctrica por una solución electrolítica.

Los equipos ampliamente utilizados constan de una celda, electrodos, membrana y circuito eléctrico, la reacción se produce en la interface metal-electrolito y la membrana permite la migración iónica, pero evita el contacto y contaminación de los productos; el conductor electrolítico se cierra mediante conductores metálicos externos. Los materiales de los electrodos y la construcción del equipo son muy variados dependiendo de la aplicación.

El electrolito: Un medio acuoso que contiene los iones del metal a depositar y otros iones que migran permitiendo el paso de la corriente entre los electrodos.

El ánodo: Material sólido conductor en cuya superficie se realiza un proceso de oxidación con liberación de electrones.

$$M^0 \rightarrow M^{2+} + 2 e^-$$

El cátodo: Electrodo sólido conductor en cuya superficie se realiza un proceso de reducción con los electrones provenientes del ánodo.

$$M^0 \leftarrow M^{2+} + 2 e^-$$

1.2 Termodinámica de los Procesos Electroquímicos.

1.2.1 Potencial y corriente.

Cuando un metal es sumergido en una solución acuosa que contiene iones de ese metal, habrá un intercambio de iones metálicos entre dos fases, el metal y la disolución. Algunos iones de la red cristalina se introducen en la solución y algunos iones de la solución entran en la red cristalina. Inicialmente puede ocurrir una de estas reacciones más rápido que el otro. Supongamos que las condiciones son tales que más iones dejan de entrar en la red cristalina. En este caso de que haya un exceso de electrones en el metal y el metal adquiere carga negativa, (carga sobre el metal por unidad de área). En respuesta a la percepción de la parte metálica de la interface, también hay un reordenamiento de las cargas en el lado de la solución de la interface. La carga negativa en el metal atrae iones cargados positivamente de la solución y repele iones cargados negativamente.

El resultado de esto es un exceso de iones positivos en la solución en la proximidad de la interface metal. Así, en este caso, el lado de la solución de la interface adquiere carga opuesta e igual, (la carga por unidad de área en el lado de la disolución de la interface). Esta carga positiva en el lado de la disolución de la interface garantiza reducir la tasa de iones que salen de la red cristalina (debido a repulsión) y acelera la tasa de iones de entrar en el cristal. Después de un cierto periodo de tiempo un equilibrio dinámico entre el metal y sus iones en la disolución tendrá como resultado:

$$A + z_e \rightleftharpoons B$$

Donde z_e es el número de electrones que participan en la reacción.

Como es de conocimiento la reacción de izquierda a derecha consume electrones y se llama reducción y la reacción de derecha a izquierda libera electrones y es llamado oxidación. En el equilibrio dinámico el mismo número de iones entran, y el mismo número de iones dejan la red cristalina.

$$\vec{z} = \vec{z}$$

La región de interface es neutra en el equilibrio.

El resultado de la carga de la interface establece una diferencia de potencial que es una manifestación del equilibrio entre el metal en el electrodo y sus iones en la disolución:

$$\Delta \Phi = \Phi_{\text{metal}} - \Phi_{\text{solución}} \qquad (1-1)$$

Llamado potencial absoluto del electrodo que no se puede medir y que sólo se puede comparar su valor con otro potencial absoluto de electrodo que sea fijo y reproducible llamado potencial absoluto de referencia.

Se llama entonces potencial relativo o simplemente potencial de electrodo a la diferencia de potencial absoluto de este electrodo y del electrodo de referencia:

$$\mathbf{E} = \Delta \Phi - \Delta \Phi_{\mathrm{ref}} \qquad (1-2)$$

1.2.2 Electrodos y celda en equilibrio.

Si se considera la reacción en el electrodo:

$$A + z_e \rightarrow B$$

El potencial estándar de electrodo es proporcional a la diferencia de la energía de formación de Gibbs, como sigue:

$$\Delta G_B^f - \Delta G_A^f = -z_e F E^0 \qquad (1-3)$$

Según la convención de la IUPAC, los potenciales estándar positivos corresponden a una ΔG negativa, es decir, para las reacciones exotérmicas tales como oxidaciones.

Con el fin de medir la diferencia de potencial de una interface, hay que conectarlo a otro y así formar una celda electroquímica. La diferencia de potencial a través de esta celda electroquímica se puede medir.

El potencial que corresponde a una reacción electroquímica donde las concentraciones de las especies son 1M, la presión de los gases 1 atm y la temperatura 298 K se denomina potencial estándar E^0 .

ELECTRODO	E ° (V)	ELECTRODO	E ° (V)
Li ⁺ /Li	-3.403	Fe ²⁺ /Fe	-0.447
Rb ⁺ /Rb	-2.98	Cd ²⁺ /Cd	-0.4032
Cs ⁺ /Cs	-2.92	In ³⁺ /In	-0.3384
K ⁺ /K	-2.931	Ti ⁺ /Ti	-0.336
Ba2 ⁺ /Ba	-2.912	Sn ²⁺ /Sn	-0.1377
Sr2 ⁺ /Sr	-2.89	Pb ²⁺ /Pb	-0.1264
Ca2 ⁺ /Ca	-2.868	Cu ²⁺ /Cu	0.3417
Na ⁺ /Na	-2.71	Hg ²⁺ /Hg	0.851
Mg ²⁺ /Mg	-2.372	Ag ⁺ /Ag	0.7994
Be ²⁺ /Be	-1.847	OH ⁻ /O2(g)	0.401
Al ³⁺ /Al	-1.662	Cl ⁻ /Cl2(g)	13.579
Zn^{2+}/Zn	-0.762	F ⁻ /F2(g)	2.866

 Tabla I.1

 Potenciales de electrodo estándar.

El potencial de equilibrio E_e es diferente al potencial estándar de la reacción porque depende de la temperatura y las actividades de las especies A y B involucradas en la reacción.

$$\alpha = \gamma_i C \qquad (1-4)$$

Dónde: α es la actividad de la especie, C concentración y γ_i coeficiente de actividad que puede ser determinado por la ley de Debye y Huckel.

$$\log \gamma_i = -\frac{Az_+ z_- \sqrt{I_i}}{1 + Ba_i \sqrt{I_i}} \qquad (1-5)$$

Fuente: G. Millazzo and S. Caroli, Wiley, New York, 1978.

Dónde: z es el número de carga del ion positivo y negativo, A = 0,509 para una solución acuosa a 25 °C, B = 3,286, a_i el diámetro efectivo del ion y I_i es la fuerza iónica adimensional que pude ser determinada por la ecuación siguiente:

$$I_i = \frac{1}{2} \left[\left(z_+^2 C_+ \right) + \left(z_-^2 C_- \right) \right] \qquad (1 - 6)$$

Dónde: *z* el número de carga del ion positivo o negativo y *C* la concentración para la especie positiva o negativa.

Entonces el potencial de electrodo reversible, E_e está dada por la ley de Nernst:

$$E_e = E^0 + 2.3 \frac{RT}{z_e F} \log\left[\frac{a_B}{a_A}\right] \qquad (1-7)$$

Dónde: E^0 el potencial estándar, R constante general de los gases, T la temperatura, F constante de Faraday, y z_e carga eléctrica.

En cuanto a la caída óhmica, está asociada a la resistencia eléctrica del sistema con las contribuciones del electrolito y la membrana puede incluirse la caída en el metal y el material de la celda etc.; la resistividad depende de la naturaleza de los iones, concentración y temperatura del electrolito, mientras en la membrana es inversamente proporcional a la porosidad compatible con su función separadora.

El voltaje de celda resulta de la contribución de los potenciales electródicos de equilibrio, las sobretensiones anódica y catódica y la caída óhmica:

$$E_R = E_T + \eta_A + \eta_C + \eta_\Omega + \eta_K \qquad (1-8)$$

Donde la diferencia de potencial entre el ánodo y el cátodo está dada por:

$$E_T = E_a - E_c \qquad (1-9)$$

1.3 Leyes de Faraday.

Las leyes de Faraday establecen la relación entre la corriente que pasa a través de la interface electrodo electrolito y la tasa de conversión del reactante de interés. Así en

la reducción de la especie A que implica z_e electrones:

$$A + z_e \rightarrow B$$

• La *cantidad de una sustancia* producida durante una electrólisis es directamente *proporcional a la intensidad* de *corriente y al tiempo* que circula por la misma, es decir, a la cantidad de electricidad (carga eléctrica) que circula por el electrolito.

$$m = kQ \qquad (1 - 10)$$

• Para una misma carga eléctrica, *la masa de una sustancia obtenida* en una electrólisis *es proporcional a su equivalente gramo*.

$$m = \frac{P_{at}}{z_e F} Q \qquad (1 - 11)$$

Donde F es la constante de Faraday igual a 96487 coulomb, z_e es la carga eléctrica de un mol de electrones, P_{at} es el peso atómico y Q es la carga eléctrica.

1.4 Cinética de los procesos electroquímicos.

Los reactores electrolíticos operan generalmente bajo condiciones de no equilibrio, donde la cinética dicta la selectividad y rendimiento de los productos, contribuyendo al diseño, operación y optimización de los procesos; en estas condiciones deben controlarse algunos parámetros, como la corriente eléctrica aplicada entre electrodos.

Cuando una reacción electroquímica alcanza el equilibrio (no se produce corriente neta), el potencial E_e viene dado por la ecuación de Nernst; si existe un sobrepotencial en el electrodo (η) se producirá el correspondiente cambio de concentración en la superficie electródica.

Donde η es una medida del alejamiento del equilibrio (grado de irreversibilidad), con cambios químicos que originan un sistema dinámico en el que entra en juego la cinética.

El sobre voltaje es la diferencia entre el potencial medido del electrodo y el potencial reversible o de equilibrio.

$$\eta = E_m - E_e \qquad (1 - 12)$$

El potencial del sobre voltaje es influenciado, por pH, temperatura, por la composición de la disolución electrolítica y altamente éste varia por las características del material de los electrodos.

Figura 1-1 Sobrepotencial para la evolución del hidrógeno en diferentes materiales catódicos.

Fuente: Chen Z, Jaramillo T.F., et al. Nano Letters, 2011.

Las reacciones químicas que involucran transferencia de cargas eléctricas son reacciones heterogéneas que se produce por efecto de un campo eléctrico, aplicado o inducido por el sistema.

La cinética electroquímica estudia la velocidad de ocurrencia de una reacción electroquímica como sigue:

$$O_x + z_e \overset{\overrightarrow{k}}{\underset{\overleftarrow{k}}{\leftarrow}} R_{ed}$$

$$dQ = -z_e F dN_{Ox} \qquad (1-13)$$

La variación de la carga respecto al tiempo resulta:

$$\frac{dQ}{dt} = -z_e F \frac{dN_{Ox}}{dt} \qquad (1-14)$$

Dónde:

$$\frac{dQ}{dt} = I = corriente \ electrica \ [A] \qquad (1 - 15)$$
$$\frac{I}{A} = i = densidad \ de \ corriente \ [A/m^2] \qquad (1 - 16)$$

Por lo tanto:

$$i = -z_e F \frac{1}{A} \frac{dN_{0x}}{dt} \qquad (1 - 17)$$
$$i = -z_e F v \qquad (1 - 18)$$

La densidad de corriente es entonces una medida de la velocidad de reacción electroquímica que tiene lugar sobre un electrodo inmerso en un electrolito.

1.5 Mecanismos de transporte.

Para una reacción simple, la velocidad depende básicamente de dos etapas:

La aproximación de reactivos desde la solución hasta la superficie de reacción, que está controlada por la difusión másica en la capa.

La transferencia electrónica en el electrodo, control por transferencia de carga.

1.5.1 Control por transferencia de masa.

Bajo control por transferencia de masa la velocidad o densidad de corriente viene dada por la ley de Fick:

$$i = z_e F D_i \frac{(C_t - C_0)}{\delta} \qquad (1 - 19)$$

Siendo z_e el número de carga y D_i coeficiente de difusión de la especie, esto suele ocurrir cuando los reactivos están a menor concentración.

El coeficiente de difusión puede ser determinado por la siguiente ecuación:

$$D_i = \frac{uRT}{zF} \qquad (1-20)$$

Dónde: *u* movilidad iónica de la especie.

Si la difusión es mucho más lenta que la transferencia electrónica, entonces la concentración inicial es aparentemente cero y la velocidad es igual a la densidad de corriente limitante; por otra parte, el espesor de la capa de difusión depende del régimen de flujo, que disminuye con la agitación del electrolito.

$$i_L = \frac{z_e F D_i}{\delta} C_t \qquad (1 - 21)$$

CONCENTRACIÓN (mol/dm³) **TEMPERTATURA ELECTROLITO** (°C) 0 0.002 0.003 0.005 0.007 0.001 0.010 1.366 LiCl 25 1.345 1.337 1.331 1.323 1.318 1.312 NaCl 25 1.585 1.576 1.570 1.560 1.610 1.555 1.545 KCl 1.993 1.964 1.954 1.945 1.934 1.925 1.917 25 2.051 25 **RbCl** 2.011 2.007 1.995 1.984 1.973 2.004 CsCl 25 2.013 2.00 1.992 1.978 1.964 1.958 LiNO₃ 25 1.336 1.296 1.289 1.283 1.276 25 AgNO₃ 1.765 1.719 1.708 1.698 $CaCl_2$ 1.335 25 1.263 1.230 1.213 1.201 1.188 1.243 Li2SO₄ 1.041 0.990 0.974 0.965 0.950 25 MgSO₄ 25 0.849 0.768 0.740 0.727 0.710

Tabla I-2Coeficientes de difusión de electrolitos a diferentes concentraciones $(cm^2/s)*10^{-5}$.

ZnSO ₄	25	0.846	0.748	0.733	0.724	0.705	
Franker II A. Dahiman and D. H. Stahar Willow New York, 1094							

Fuente: H.A. Robinson y R.H. Stokes Wiley, New York, 1984.

1.5.2 Control por transferencia de carga.

En el caso de que el control sea por transferencia de carga, la velocidad se calcula con la ley de Butler-Volmer:

$$i = i_0 \left\{ exp\left(\frac{\beta z_e F}{RT}\eta\right) - exp\left(\frac{(1-\beta)z_e F}{RT}\eta\right) \right\}$$
(1-22)

Donde i_0 es la *densidad de corriente de intercambio* que representa el valor común de las densidades de corriente parciales catódica y anódica cuando la reacción está en equilibrio, describe la cinética del sistema en equilibrio, mide la velocidad de transferencia de carga de la forma oxidada y de la forma reducida cuando no hay paso de corriente neta en la interface. En la tabla se indican las densidades de algunos procesos, donde se observa que los valores dependen del sistema.

SISTEMA	ELECTRODO	MEDIO	/A			
$C2 \perp /Cu$	Cu	$C_{\rm P}SO_{\rm I}10^{\rm C}$ M	2*10 ⁻¹			
C2+/Cu	Cu		2.10			
Fe2+/Fe	Fe	FeSO ₄ 10 HM	1*10 ⁻⁴			
H+/H2	Hg	HSO4 $5.10\frac{\text{m}}{2}\text{M}$	5*10 ⁻⁹			
	Pt	HSO4 5.10 ² mM	5 10			
Hg2+/Hg	Hg	Hg(NO3)2 1 Mm +HClO4 $2*10$	5*10 ⁻³			
Na+/Na	Hg	NaOH 10 mM	$4*10^{2}$			
Ni2+/Ni	Ni	NiSO4 10	$2*10^{-5}$			
Pb2+/Pb	Hg	Pb(NO ₃) ₂ mM	$1*10^{3}$			
Zn2+/Zn	Zn	$ZnSO_4$ 10 M	2*10 ⁻¹⁷			
	Hg	$Zn(NO_3)_2$ mM	210			

Tabla I-3 Densidades de corriente de intercambio

Fuente: Millazzo y S.Caroli Wiley New York 1978.

Los coeficientes de transferencia de carga dependen del mecanismo de reacción y se calculan por:

$$\beta = b \left(\frac{RT}{A}\right) \qquad (1-23)$$

Siendo b la pendiente de la rama correspondiente en el diagrama de Evans para una reacción de etapa y electrón simples los coeficientes son próximos a 0,5.

1.6 Tecnología de los Reactores Electroquímicos.

Un reactor electroquímico óptimamente desarrollado es aquel que permite obtener una mayor eficiencia de corriente y una alta productividad de proceso donde tiene lugar una conversión simultánea de energías, química y eléctrica.

1.6.1 Reactores experimentales de macroelectrólisis.

Los reactores experimentales de macroelectrólisis buscan transformar una cantidad apreciable de materia en un tiempo razonable. Estos reactores experimentales pueden trabajar de modo potenciostático o galvanostático. Un reactor potenciostático está limitado a nivel laboratorio y mucho más a un primer escalamiento de la celda y electrodos esto se debe al elevado costo de un potencióstato con la salida de corriente mayor a 10 Amperes que se requiere para controlar el sistema.

Fuente: F. C.Walsh Ingeniería Química. Universidad de Bath, Claverton Down, Bath BA2 7AY, UK © 2001.

1.6.2 Parámetros operacionales de los reactores electroquímicos.

Constituye el núcleo de estos sistemas y que pueden caracterizarse con los siguientes parámetros:

Conversión: Como en cualquier otro proceso químico, se define como la fracción de reactivo consumido en una reacción electroquímica:

$$x_A = 1 - \frac{C_t}{C_0} \qquad (1 - 27)$$

Eficiencia de corriente: En conclusión, el peso de material efectivamente depositado versus el que teóricamente debía haberse precipitado constituye la eficiencia de corriente (η_i)

$$\eta_i = \frac{m_r}{m_t} \tag{1-28}$$

Un valor inferior a la unidad puede indicar la formación de subproductos por reacciones secundarias o bien por electrolisis del disolvente u otro electrolito de soporte.

Consumo energético: Representa la energía necesaria para obtener una cantidad específica de producto:

$$W = \frac{E_r lt * 10^{-3}}{m_r} \tag{1-29}$$

Eficiencia energética de la celda: Este parámetro representa la razón entre la energía teóricamente requerida W_t , es decir, que las reacciones que se producen en los electrodos son rápidas y en ausencia total de términos resistivos en las celdas de

electrólisis, y la energía realmente consumida W_r en las condiciones particulares reales de la electrólisis.

$$Pw = \frac{W_t}{W_r} \qquad (1-30)$$

1.6.3 Propiedades de los reactores electroquímicos.

Es posible clasificar los reactores de acuerdo a las características propias que éstos poseen.

	lasificación de los n	eactores electroqui	mice	98.
EN FUNCIÓN DE LA EXISTENCIA O NO DE SEPARADOR				Dividida No dividida
EN VIRTUD D	DE SU FORMA GE	OMÉTRICA		Paralelepípedo Cubo Cilíndrica Forma variable
SEGÚN EL TIPO DE CONEXIÓN ELÉCTRICA				Monopolar Bipolar
		ESTÁTICO)	
	Dos dimensiones	Tres	dime	ensiones
		Porosos		Lecho compacto
	Placas	Placas perforado	S	Gránulos
	Cilindros	Mallas		Microesferas
	Placas expandidas	Tejidos		Fibras
SEGÚN EL		Fieltros		Barras cilíndricas
TIPO DE		Espumas		Anillos rasching
ELECTRODO				
		MOVIL		
	Rotatorio 2D	Lecho fluidizado	3D	Lecho móvil 3D
		Microesferas Esferoides		Inclinado Vibrante Pulsante

Tabla I-4Clasificación de los reactores electroquímicos.

Fuente: José González García, Vicente Montiel y Antonio Aldaz. 1998.

Los reactores electroquímicos también se clasifican dependiendo de la forma en que el electrólito circula por éstos, existen tres tipos básicos de reactores electroquímicos.

Reactores electroquímicos segun el modo de operación.				
TIPO DE REACTOR	NOMBRE COMERCIAL	VENTAJAS	DESVENTAJAS	
Flujo pistón	Rollo Suizo ESE	Gran área catódica v/s volumen de celda	Limitado volumen para depósito Elevado costo de bombeo	
	Eco cell	Gran velocidad de transferencia de masa	Requiere de un sistema de remoción	
Tanque agitado	Lecho fluidizado	Amplia superficie catódica	Mala distribución de potencial Elevado costo de bombeo	
continuo	Chemelec cell	Gran velocidad de transferencia de masa	Sus efluentes deben pasar por etapas posteriores de tratamiento	
	Lecho tubular rotatorio	Amplia superficie catódica	Alto consumo especifico de energía	
Bacht	Espouted bed cell	Amplia superficie catódica	Taponamiento de la membrana	

Tabla I-5 Reactores electroquímicos según el modo de operación

Fuente: Introducción a la ingeniería electroquímica F. CCEURET.Ed. REVERTE.1992.

1.7 Reactor de flujo pistón.

Los reactores de flujo pistón son aquellos que operan de manera continuo y en estado estacionario. Los reactivos alimentan el electrolito que fluye en el reactor y a la parte que no reaccionan. Los productos se descargan en el extremo final del reactor. La concentración tanto del reactivo como del producto, es función de la longitud del reactor y el tiempo de residencia es igual para todas las especies.

Cuando existe una alta resistencia a la transferencia de masa, la concentración también es función del radio geométrico.

Por otra parte, con el propósito de mantener las condiciones de operación constantes y así obtener la conversión deseada, los reactores operan con recirculación.

Figura 1-3 Proceso electroquímico con recirculación.

Fuente: F. C.Walsh Ingeniería Química. Universidad de Bath, Claverton Down, Bath BA2 7AY, UK © 2001.

Para los reactores de flujo pistón con recirculación, la concentración cambia con la conversión.

1.7.1 Modelo matemático para un reactor de flujo pistón con recirculación.

Si el volumen del tanque receptor es mucho mayor que el volumen del reactor rectangular, entonces en base a un balance de materia la concentración a la entrada a un tiempo dado está definida por la siguiente expresión:

$$c_t = c_0 exp\left[-\frac{t}{\tau_r}\{1 - exp(-k_m A_e \tau)\}\right]$$
 (1-31)

Dónde: c_t es la concentración a la salida del reactor, c_0 es la concentración inicial, τ_r el tiempo de residencia en el tanque receptor, τ el tiempo de residencia en el reactor, A_e el área específica del electrodo y t el tiempo de electrolisis.

A su vez el tiempo de residencia se define como sigue:

$$\tau_r = \frac{V_r}{Q} \qquad (1-32)$$

Dónde: V_r el volumen del fluido en el tanque receptor y Q el flujo volumétrico que sale del tanque receptor.

Por otra parte el tiempo de residencia en el reactor se define de la misma forma:

$$\tau = \frac{V}{Q} \qquad (1 - 33)$$

Dónde: V el volumen del fluido en el reactor y Q el flujo volumétrico que sale del reactor.

1.8 Flujo a través de una sección rectangular.

El flujo a través de una sección rectangular a lo largo de una placa paralela, impulsada por una fuerza externa de un fluido Newtoniano; es el característico de un reactor electroquímico tipo filtro prensa, siendo el más usual en la electro síntesis y la deposición de metales.

Figura 1-4 Flujo a través de una sección rectangular.

Fuente: F. C.Walsh Ingeniería Química. Universidad de Bath, Claverton Down, Bath BA2 7AY, UK © 2001.

Cuya condición de flujo del electrolito describe el número de Reynolds y la energía mecánica está representada por la ecuación de Bernoulli.

$$R_e = \frac{\nu a_e \rho_f}{\mu} \qquad (1 - 34)$$

$$\frac{1}{\rho} \Delta P + \Delta \left(\frac{\nu^2}{2}\right) g \Delta(h) = w_f + w_M \qquad (1 - 35)$$

La potencia necesaria para bombear el electrolito a través del reactor y lograr el caudal necesario, está dada por la siguiente expresión:

$$P_b = Q\Delta P \qquad (1 - 36)$$

Dónde: ΔP caída de presión y Q flujo volumétrico.

Fuente: C. Ponce de León I. F.C. Walsh "Transporte de masa y dispersión de flujo en un módulo filtro prensa" Ingeniería Química 2008.

Los reactores electroquímicos experimentales de sección rectangular en general son diseñados para describir con precisión el transporte de masa en una sola dimensión

perpendicular a la superficie del electrodo, es decir, en una sección longitudinal del canal a corriente limite.

Para un flujo totalmente desarrollado en un canal de sección rectangular, la correlación de grupos adimensionales más comunes, se representa de la siguiente forma:

$$Sh = x\gamma * Re^b * Sc^c * L_e^e \qquad (1-37)$$

Tabla 1-6	
Grupos adimensionales utilizados en transporte de materi	a.

GRUPO ADIMENSIONAL	DEFINICIÓN	ECUACIÓN	SIGNIFICADO
Número de	EFIN C.L	(1.38)	Transporte de materia
Sherwood	$Sh = \frac{\overline{k}\overline{D}}{\overline{D}}$	(1-38)	por convección forzada
Número de Stanton	$h = \frac{L}{D}$	(1.30)	Transporte de materia
	$St = \frac{h_{H_{e}}}{h_{e}}$	(1-39)	por convección forzada
Número de	$St = \frac{k_m}{v}$	(1,40)	Flujo de fluido en
Reynolds	$Re = -\frac{\nu}{\mu}\rho$	(1-40)	convección forzada
Número de Grashof	$Re = -\mu$	(1 41)	Flujo de fluido en
	$Gr = \frac{L}{\mu^2} \frac{g\rho}{\lambda_i \rho}$	(1-41)	convección natural
Número de Schmidt	$=\frac{L^3 \frac{\partial P}{\partial r} \Delta \rho}{\mu^2 n}$	(1, 42)	Propiedades de
	$Sc = \overline{D}$	(1-42)	transporte

Fuente: Un primer curso de ingeniería electroquímica. Frank Walsh Ed. Club Universitario 2000.

Tabla 1-7
Correlaciones de números adimensionales.

CONDICIONES		b	С	e
Expresión teórica para el flujo Laminar totalmente desarrollada en electrodos de anchura infinita Re Sc (d _e /L) > 104 ; L/d _e < 35	1,85	1/3	1/3	1/3
Flujo laminar totalm ⁰⁴ ; Llesarrollado 58 < Re < 2000; 2850 < Sc <5140 0,17 < L/d _e < 12,5; $\gamma = 0$ $p_1 \text{ total}$ 167 o 0,175	2,54	0,3	0,3	0,3
Flujo turbulento totalmente desarrollado 2000 < Re < 20000; L/d _e < 12,5	0,023	0,8	1/3	min

Fuente: Un primer curso de ingeniería electroquímica. Frank Walsh Ed. Club Universitario 2000.

En el caso de un flujo laminar totalmente desarrollado, la expresión teórica resultante depende del factor de corrección geométrico, definido como:

$$\gamma = \frac{a}{B} \tag{1-43}$$

Dónde: γ factor de corrección geométrico, *a* anchura del compartimento y *B* la base del compartimento.

El grupo de longitud adimensional, es la relación de diámetro hidráulico equivalente respecto a la longitud del electrodo en la dirección del flujo:

$$L_e = \frac{d_e}{L} \tag{1-44}$$

Dónde: L_e longitud adimensional, d_e diámetro hidráulico y L longitud del electrodo.

El parámetro característico tanto para Re como para Sc es el diámetro hidráulico equivalente que se define como la relación siguiente:

$$d_e = \frac{4Ba}{2B+2a} \tag{1-45}$$

La velocidad utilizada en el número de Reynolds, es la velocidad normal en la dirección del flujo definida de la siguiente forma:

$$v_f = \frac{Q}{Ba} \tag{1-46}$$

Dónde: v_f velocidad normal de flujo y Q flujo volumétrico.

La geometría del distribuidor presenta un área libre que permite el flujo hidrodinámico con velocidad significativo a través de los orificios que puede calcularse con la siguiente ecuación:

$$v_{for} = \varsigma_{or} \left(\frac{2\Delta P_d}{\rho_f}\right)^{1/2} \qquad (1-47)$$

$$\Delta P_d = 0.3\Delta P \qquad (1 - 48)$$

Dónde: ΔP_d caída de presión en el distribuidor, y ΔP caída de presión en flujo canal y ς_{or} coeficiente de descarga que es función del espesor del distribuidor y el arreglo de los agujeros, etc.

	1 abia 1-8							
2	oeficien	te de des	carga pa	ara plato	os perfo	rados y	boquilla	s.
	Re	100	300	500	1000	2000	>3000	
	Re	0,68	0,7	0,68	0,64	0,61	0,6	

Table 1.8 С

El número de orificios para el distribuidor se puede resolver a partir de:

$$\frac{v_f}{v_{for}} = \frac{\pi}{4} \frac{d_{or}^2}{Ba} N_{or} \qquad (1-49)$$

Dónde: N_{or} es el número de orificios de la placa distribuidor y d_{or} diámetro interno de los orificios ($d_{or} \le 2$ mm para placas experimentales).

El número de filas para una placa distribuidor de flujo de área específica está dado por la siguiente ecuación:

$$Nf_{or} = \frac{\gamma}{N_{or}} 100 * s \qquad (1 - 50)$$

Dónde: γ el factor de corrección geométrico y s es el porcentaje del total de área ocupado.

1.9 Membranas de intercambio iónico.

El intercambio iónico es un fenómeno químico superficial que se produce entre un sólido iónico y una solución electrolítica sin modificación sustancial de la estructura del sólido.

En la mayoría de los casos, el material utilizado es un producto sintético con un elevado poder de intercambio iónico. Diversas sustancias naturales tienen

Fuente: Ingeniería de las Reacciones Químicas © *Editorial Reverté, S.A. 1990.*

propiedades de intercambio iónico tales como la sílice, la celulosa, la lignina y el vidrio. El transporte de componentes a través de la membrana se realiza siempre aplicando una fuerza impulsora. Esta fuerza puede ser debida a gradientes de concentración, presión, temperatura o potencial eléctrico.

	ruerza impuisora de transporte a traves de memoranas.				
-	SEPARACION	GRADIENTE	MECANISMO		
	diálisis	concentración	difusión restringida		
	electrodiálisis	potencial eléctrico	transporte contra iónico		
	nano filtración	presión hidrostática	tamizado y difusión restringida		
	osmosis inversa	presión hidrostática v/s presión osmótica	flujo capilar y retención preferencial		

Tabla I-9
Fuerza impulsora de transporte a través de membranas.

Fuente: P.V Danckwerts. (1953).

Es importante puntualizar que una membrana, no se define como un material pasivo, sino como un material funcional; ya que realiza una selección de los elementos contenidos en la alimentación.

Hay dos tipos de membranas de intercambio iónico:

Membranas de intercambio catiónico que contienen grupos cargados negativamente, como por ejemplo $(SO_3^-, PO_3^{2-}, PO_2H^-)$, fijados a la matriz del polímero (por ejemplo, poliestireno).

Membranas de intercambio aniónico que contienen grupos positivamente cargados (NR_3^+, NH_3^+, SR_2^+) fijados a la matriz del polímero.

Fuente: Ciencia y Tecnología de membranas. © 2017 by John Wiley & Sons Ltd.

En la membrana de intercambio catiónico, los aniones fijos se encuentran en equilibrio eléctrico con los cationes móviles en los espacios intersticiales del polímero. En cambio, los aniones móviles están excluidos casi en su totalidad de la membrana de intercambio catiónico, ya que su carga eléctrica es idéntica a la de los iones fijos; debido a la exclusión de los aniones, la membrana de intercambio catiónico solo permite el transporte de cationes. Las membranas de intercambio aniónico, llevan las cargas positivas fijadas en la matriz del polímero, por lo tanto, excluyen a los cationes y sólo son permeables a los aniones.

1.10 El zinc.

El zinc se encuentra a menudo en la naturaleza junto con otros minerales de sulfuro. Los metales se separan por diferentes métodos, como el zinc es resistente a la corrosión y fácil de aplicar, gran parte del mismo se usa para proteger los productos a base de hierro y acero.

En Bolivia¹ la esfalerita oscura, rica en inclusiones microscópicas de estanina de grano grueso que ha sufrido una fuerte recristalización acompañadas de molibdenita, calcopirita, pirrotina, arsenopirita y pirita, se observan en las pegmatitas de la terminación meridional del batolito de Sorata.

¹ "Los minerales de Bolivia y sus parajes" Tomo I. ed. 1998.

Los yacimientos donde la blenda acompaña a la galena se presentan en la Chojña, Bolsa Negra, Colquiri, Caluyo, Mina Matilde, en Tupiza Morados, Potrero, San Lucas, Tajo de la Mina de Pulacayo y en los Lípez. En Tarija grandes yacimientos de sulfuro polimetálico de oro, plata y zinc. En Palos Blancos minerales como el zinc, al igual que en San Juan del Oro, El Puente en la zona alta.

1.10.1 El proceso electrolítico de obtención de zinc.

La mayoría del zinc metálico actualmente es producido a partir de la electrolisis de solución de sulfato de zinc, producido previamente por un proceso hidrometalúrgico desde la extracción de la materia prima hasta el producto requerido.

Fuente: Proceso de extracción electrolítico de zinc (Morgan, 1985)

1.10.2 Extracción de mineral.

Aproximadamente el 80 % de los yacimientos de zinc se encuentran bajo tierra, el 8 % se encuentran a cielo abierto, mientras que el resto son una combinación de ambos tipos. La concentración de zinc en los minerales suele variar entre el 5 y el 15 % dependiendo del mineral sulfuroso a tratar, específicamente la mena principal del zinc es la blenda.

1.10.3 Molienda.

El proceso que existe en un circuito de molienda es variable que depende de la mena a tratar y del tamaño de partícula a lixiviar que define la velocidad de disolución y por consiguiente el porcentaje de recuperación en un determinado periodo. Según prácticas industriales, unos tamaños típicos de menas para lixiviación para diferentes minerales pueden ser lo siguiente:

MINERAL	TAMAÑO LIXIVIACIÓN (mm) (mallas ASTM)
Cobre oxidado	-12.00
Oro	-0.25 (-60)
Conc. de oro (Sulfuros)	-0.044 (-325)
Uranio	-2 a -0.15 (-10 a-100)
Bauxita	-0.15 (-100)
Limenita	-0.074 (-200)
Laterita (níquel)	-0.841 a - 0.074 (-20 a -200)
Conc. de níquel (Sulfuros)	-0.074 (-200)
Calcinados de zinc	-0.074 (-200)

Tabla I-10 Famaños típicos de menas para lixiviación.

Fuente: ITGE minería química ed. 1991.

1.10.4 Lixiviación atmosférica.

Para mejorar la recuperación del zinc y evitar así pérdidas de metal se efectúa la lixiviación ácida durante 2 a 4 horas. Bajo estas condiciones no sólo se disuelve el zinc, sino también el hierro asociado a la ferrita de zinc (franklinita); obteniéndose una solución rica en zinc que contiene entre 15-30 g/l de hierro que debe ser eliminado de la misma.

 $ZnO + H_2SO_4 \qquad ZnSO_4 + H_2O$ $Fe_2O_3 + 3H_2SO_4 \qquad Fe_2 (SO_4)_3 + 3H_2O$

El porcentaje de sólidos debe ser en la mayoría de los casos lo más alto posible para alcanzar una alta concentración del ion metálico en la solución de lixiviación, la velocidad de agitación debe ser lo suficiente alta para mantener los sólidos en suspensión, para que no decanten. Una velocidad de agitación alta tiende a favorecer la cinética de la reacción.

MÉTODO LIXIVIACIÓN	TAMAÑO (mm) TIEMPO AP		
ESTÁTICA			
En sitio	Grandes y variable	Variables	
En vacíes	Hasta 1500	Años	
En pilas	Hasta 150	1 a 6 meses	
En tanques	Hasta 12	15 a 30 días	
DINÁMICA			
Con agitación	Hasta 2	2 a 24 horas	
Con agitación	Hasta 0,010	1 a 10 horas	

Tabla I-11 Métodos de lixiviación

Fuente: ITGE minería química ed. 1991.

1.10.5 Neutralización.

La neutralización es la etapa en la que de una forma se pueda precipitar el hierro con el que coprecipitan impurezas como el As, Sb y Ge. También se coprecipitan sílice coloidal e hidróxido de aluminio. Esta precipitación de Fe^{3+} se efectúa actualmente haciendo uso de las precipitaciones jarosítica, goetítica o hematítica.

el hierro podía ser precipitado como jarosita que es un compuesto sintético cristalino cuya fórmula es $M_2Fe_6(SO_4)_4(OH)_{12}$ donde M puede ser Na, K, NH₄, etc., añadiendo NH₄⁺ o Na⁺ a la disolución, ajustando el pH a 1,5 y fijando una temperatura de unos 90°C. El resto del hierro se puede precipitar a pH 3,5 por neutralización. La jarosita tiene la ventaja de separarse muy bien de la disolución. Con este método se puede permitir la lixiviación de más hierro, a la vez que se recupera el zinc de las ferritas aumentando así la recuperación de zinc del mineral.

La reacción de precipitación es la siguiente:

 $3Fe_2 (SO_4)_3 + 10 H_2O + 2 NH_4OH$ (NH₄) $_2Fe_6 (SO_4)_4(OH)_{12} + 5 H_2SO_4$

1.10.6 Separación sólido líquido.

La lixiviación por agitación produce una pulpa consistente en pequeñas partículas sólidas en suspensión en la disolución. Una etapa de separación sólido líquido es absolutamente necesaria para sacar los sólidos de la solución y enviarlos al depósito de relaves, mientras la solución clarificada puede pasar a una posterior etapa de recuperación de valores. Los espesadores son equipos que efectúan la separación líquido sólido por decantación de los sólidos.

El sólido (barro decantado) siempre viene acompañado de disolución de impregnación, y ésta contiene valores, por lo cual es importante recuperarla. Después de la lixiviación dinámica, la pulpa que se obtiene del último agitador debe pasar por etapas de separación sólido líquido y lavado, antes de desechar los sólidos lixiviados. El lavado se puede realizar en varios espesadores en los cuales el agua de lavado y la

pulpa fluyen en contracorriente. Del primer espesador sale la solución exenta de sólidos que continúa el proceso y del último, el mineral agotado o relave.

A las operaciones de lavado de los sólidos en contracorriente, se les denomina decantación en contracorriente (DCC).

1.10.7 Purificación y concentración de la disolución.

Uno de los métodos de purificación de mayor desarrollo es el proceso de extracción por solventes o proceso SX. Pero también existen otros métodos de purificación tales como la cementación y precipitación.

	ANTES DE	DESPUES DE		
ELEMENTO	PURIFICACIÓN	PURIFICACIÓN		
	(mg/l)	(mg/l)		
Fe	3000	< 2000		
Cu	1000	< 0.1		
Cd	1000	0.1-0.2		
Со	30-50	0.1-0.2		
Ni	30-50	trazas		
Sb, As	0,1	< 0.01		
Ge	< 0.1	< 0.01		

Tabla I-12 Impurezas en la disolución de lixiviación del zinc.

Fuente: ITGE minería química ed. 1991.

1.10.8 Electrólisis.

Una vez purificada la disolución, ésta se pasa a la instalación de electrólisis para la recuperación metálica.

La disolución pasa a las cubas de electrólisis que son rectangulares de hormigón y recubiertas de PVC constituidas por ánodos de plomo aleado con algo de plata para

reducir su corrosión y, por tanto, la contaminación del zinc con plomo y cátodos de aluminio.

REACCIÓN ANÓDICA:	$H_{2}^{+}(g) \rightarrow 2 H^{+} + (aq) + 2e$	$E^\circ = 0,0 V$
REACCIÓN CATÓDICA:	$Zn^{2+} + 2e \rightarrow Zn^{\circ}(s)$	$E^{\circ} = -0,76$
REACCIÓN DE CELDA:	$Zn^{2+} + H^+{}_2 \rightarrow Zn^\circ + 2H^+$	$\Delta E^\circ = -0,76 V$

El potencial estándar de zinc iónico es -0,76 V, pero cuando se electroliza una solución de sulfato de zinc, no sólo se deposita el zinc; si no también evoluciona el hidrogeno. Las grandes industrias utilizan dos métodos típicos eficientes en la obtención electrolítico de zinc, uno de ellos con soluciones altamente ácidos con una densidad de corriente de 550 A/m² y el otro con soluciones de acidez baja a una densidad de corriente de 350 A/m².

La electrólisis de zinc es extremadamente sensible a la presencia de impurezas en el electrolito.

Estas impurezas se pueden clasificar en diferentes grupos:

- El primer grupo está compuesto por las impurezas que son más electronegativos que el zinc, como el potasio, el sodio, el calcio, el manganeso, el aluminio o el magnesio. Estas impurezas no interfieren directamente con el proceso electrolítico.
- En el segundo grupo se encuentran las impurezas cuyo potencial de electrodo se encuentra entre el potencial del Zn²⁺ y el del H⁺. Es el caso del plomo, el cadmio, el talio y el estaño, en los que el sobre voltaje de hidrógeno es superior al del zinc. Estos metales se depositan y forman impurezas en el zinc.

CAPÍTULO II PARTE EXPERIMENTAL

2.1 Descripción y caracterización de la materia prima.

La materia prima es un mineral, sulfuroso polimetálico de fuente natural; perteneciente a vetas mesotermales. Extraído de la región sud del Estado Plurinacional de Bolivia Provincia Modesto Omiste del departamento autónomo de Potosí, al este limita con la provincia Méndez del departamento autónomo de Tarija y al norte con la provincia sud chichas y al sur limita con la república federal de Argentina.

Figura 2-1 Ubicación geográfica del yacimiento de sulfuro polimetálico.

Fuente: Cortesía Fuerza Aérea Militar Sección Cartografía - Bolivia 2015.

Fuente: Cortesía mina San Pedro Prov. Modesto Omiste - Bolivia 2015.

Descrip	ción y características físicas de Sulfuro Polimetálico (Blenda)
COLOR	Marrón oscuro a negro
RAYA	De tono marrón de hígado o blanco amarillento
HÁBITO	Dodecaédrico, tetraédrico o hexaédrico
BRILLO	Resinoso, diamantino semimetálico. En ejemplares finamente granulados tiene brillo graso.
CLIVAJE	Perfecto según el dodecaedro, de estructura concoide.
FRACTURA	Frágil.
DUREZA	3,5 a 4 Mohs
PESO ESPECÍFICO	3.9 a 4.2

Tabla II-1

Fuente: Los minerales de Bolivia y sus Parajes ed. 1998

Спа	ntificación Ouími	Tabla II-2 ca del Sulfuro) Polimetálico (Blei	nda)
Cuu	PARÁMETRO	UNIDAD	RESULTADO	iuu)
	Zn	%	49,88	
	S	%	27,10	
	Fe	%	4,40	
	Ag	%	0,19	
	Pb	%	0,11	
	Inertes	%	18,32	

Fuente: Laboratorio Químico Castro Código LQC. P18.F01 ed. 2015.

2.2 Descripción del método de investigación.

Para la investigación correspondiente y el alcance del objetivo propuesto del estudio, se diseña y construye un prototipo de obtención electrolítico de zinc, cuyo tipo de operación representa un proceso continuo con recirculación; esto con el fin de demostrar un proceso diferente a lo convencional, en lo que se refiere a la obtención electrolítico de zinc.

Al mismo tiempo se fija las variables para el diseño factorial experimental para la resolución de las ecuaciones que permite la determinación de variables respuesta.

Figura 2-3 Diagrama Flujo de Proceso (DFP) del sistema experimental.

Fuente: Elaboración propia, UAJMS 2017.

Figura 2-4 Diagrama de flujo que muestra la secuencia para determinar variables respuesta.

Fuente: Elaboración propia, UAJMS 2017.

2.3 Diseño del prototipo experimental.

Para el diseño del prototipo experimental de obtención electrolítico de zinc, se toma en cuenta los elementos más importantes de los cuales consta un reactor electroquímico.

- Solución electrolítica.
- Celda.
- Electrodos.

2.3.1 Preparación de la solución electrolítica.

Para preparar la solución electrolítica se sigue un proceso hidrometalúrgico donde el mineral previamente molido y tostado se trata mediante una disolución selectiva del metal de interés, contenido en el sulfuro polimetálico; en medio acuoso mediante un agente disolvente encargado de realizar la disolución por reacciones redox. Ver Anexo I.

Cuyas condiciones de preparación de la solución electrolítica se presenta en la siguiente tabla:

PARÁMETRO	UNIDAD	RESULTADO
Peso de mineral malla 230 ASTM	g	80
Volumen de agua	ml	800
Volumen de H ₂ SO ₄ concentrado	ml	65
Velocidad de agitación	rpm	500
Tiempo de agitación	hr	2
Temperatura	°C	25
Presión	atm	1
рН		0,4

Tabla II-3 Condiciones para la preparación de la solución electrolítica.

Fuente: Elaboración propia, UAJMS 2017.

Figura 2-5 Reactor INFORS para la disolución del metal de interés.

Fuente: Cortesía Laboratorio de Operaciones Unitarias LOU- UAJMS 2017.

Para predecir y establecer la condición de estabilidad o inestabilidad termodinámica de la disolución del mineral se recurre al diagrama de predominancia tipo Pourbaix que permite visualizar gráficamente y establecer la distribución del producto de reacción de hidrolisis.

Dicha preparación de la solución electrolítica acuosa acompañado de las etapas gravimétricas y volumétricas consecutivas para obtener tenores altos de zinc en solución, queda representado en la siguiente figura:

Fuente: Elaboración propia, en base a Chemical equilibrium diagrams MEDUSA 2017.

Figura 2-7 Diagrama de predominancia Eh - pH del sistema Fe - H_2O

Fuente: Elaboración propia, en base a Chemical equilibrium diagrams MEDUSA 2017.

 $t = 25^{\circ}C$

Figura 2-8 Diagrama de bloques preparación de la solución electrolítica.

Fuente: Elaboración propia, en base a cálculos estequiométricos UAJMS 2017.

La solución electrolítica obtenido es enviada al centro de análisis fisicoquímico de la Universidad Autónoma Juan Misael Saracho, cuyo análisis presenta los siguientes parámetros fisicoquímicos:

PARÁMETRO	TÉCNICA DE ENSAYO	UNIDAD	RESULTADO
Zinc disuelto	SM 3500-Zn B	g/l	39,595
Hierro disuelto	SM 3500-Fe B	g/l	2,229
Plomo disuelto	SM 3500-Pb B	mg/l	4,75
Conductividad	SM 2510-B	μS/cm	168,7
Viscosidad		cP	1,5
Densidad	NB 34021:07	g/ml	1,136
pH	SM 4500-H-B		0,47

Tabla II-4 Características fisicoquímicas de la solución electrolítica.

Fuente: Centro de Análisis, Investigación y Desarrollo" CEANID" 2017.

Figura 2-9 Disolución electrolítico obtenida.

Fuente: Cortesía Laboratorio de Operaciones Unitarias LOU- UAJMS 2017.

Dicha solución rica en zinc, es destinada a un tratamiento mediante electrólisis; en el reactor experimental tipo filtro prensa para obtención electrolítica de zinc.

2.3.2 Diseño preliminar de la celda.

El diseño de la celda está sujeto según datos preliminares y en base a la escala tecnológica de reactores electroquímicos (Figura 1-2) que caracteriza un tamaño experimental genérico.

Tabla II-5

Datos preliminares de diseño de la celda.							
PARÁMETRO	UNIDAD	RESULTADO					
Densidad de corriente teórico	mA/cm ²	41					
de obtención de zinc							
Intensidad de corriente para	mA	2000					
escala experimental							
Flujo volumétrico	cm ³ /s	12					
Volumen	cm ³	60					

Fuente: Elaboración Propia, UAJMS 2017.

Con los datos preliminares se determina el área de electrodo equivalente a:

$$A = \frac{I}{i} = \frac{2000 \ mA}{41 \ mA/cm^2} = 48,780 \ cm^2$$

De tal forma se contempla las siguientes dimensiones internas de los compartimentos de la celda de electrolisis en las que se alojan los electrodos de sección determinada.

COMPARTIMENTO	ALTURA L (cm)	BASE B (cm)	ANCHO a (cm)
Anódico	10	5	1,2
Catódico	10	5	1,2
Anódico	10	5	1,2

 Tabla II-6

 Dimensiones internas de los compartimentos de la celda.

Fuente: Elaboración Propia, UAJMS 2017.

La celda está compuesta de tres compartimentos, dos de los extremos que alojan a los electrodos terminales y uno en la parte central donde se encuentra el electrodo de trabajo.

2.3.2.1 Parámetros característicos de los compartimentos de la celda.

Los parámetros geométricos característicos de los compartimentos se determinan de

acuerdo a las dimensiones internas que presentan los mismos.

Parámetros geométricos de los compartimentos de la celda.							
COMPARTIMENTO	DIAMETRO HIDRAHULICO	FACTOR DE CORRECCION	LONGITUD ADIMENCIONAL				
	d _e (cm)		L _e				
Anódico	1,935	0,24	0,194				
Catódico	1,935	0,24	0,194				
Anódico	1,935	0,24	0,194				

Tabla II-7

Fuente: Elaboración Propia, UAJMS 2017.

2.3.2.2 Dimensionamiento de la placa distribuidor de flujo.

COMPARTIMENTO	ÁREA TOTAL DISTRIBUIDOR A _t (cm ²)	DIÁMETRO DE ORIFICIO d _{or} (cm)	NÚMERO DE ORIFICIOS N _{or}	NÚMERO DE FILAS DE ORIFICIOS N _{for}
Anódico	6	0,18	6	3
Catódico	6	0.18	6	3
	С	- 7 -		

Tabla II-8 1. flyin do la 1 1 1 11

Fuente: Elaboración Propia, UAJMS 2017.

2.3.4 Electrodo o material catalítico.

Desde el punto de vista de la aplicación, los electrodos son los promotores que representan una óptima actividad catalítica, para la reacción de interés y también una alta conductividad eléctrica.

De acuerdo a las reacciones de descomposición teórico tanto de agua como de sulfato de zinc en solución acuoso se tiene:

REACCIÓN CATÓDICA
$$H_2^+(g) + 2e \rightarrow 2H^+$$
 $E^\circ = 0,0V$
REACCIÓN ANÓDICA: $H_2O(l) \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e$ $E^\circ = 1,229V$

REACCIÓN DE CELDA:
$$H_2 O \rightarrow 2H^+ + \frac{1}{2}O_2$$
 $\Delta E^\circ = -1,229 V$

REACCIÓN CATÓDICA:
$$Zn^{2+} + 2e \rightarrow Zn^{\circ}(s)$$
 $E^{\circ} = -0,76$

REACCIÓN ANÓDICA:
$$H_2O(l) \to \frac{1}{2}O_2 + 2H^+ + 2e$$
 $E^\circ = 1,229V$

REACCIÓN DE CELDA: $Zn^{2+} + H_2O \rightarrow Zn^{\circ} + \frac{1}{2}O_2 + 2H^+ \Delta E^{\circ} = -1,989 V$

De lo anterior se puede deducir, que al electrolizar el agua y la solución electrolítica de sulfato de zinc; la descomposición de los mismos puede resultar en productos gaseosos, oxígeno en el ánodo e hidrogeno en el cátodo, cuya eficiencia dependerá del material catalítico a emplear. Además el potencial de celda tiene que oscilar en un valor mucho mayor que 1,989 V esto para invertir la reacción, de esta manera vencer el potencial galvánico y comience la electrolisis.

Esto implica que la selección del material catódico, debe estar conforme al sobrepotencial de hidrogeno sobre el electrodo de trabajo.

Según la figura 1-1 el sobrepotencial de evolución del hidrogeno sobre el material de aluminio es mayor y se requiere una densidad de corriente mínimo para llevar el potencial a un valor bajo, suficiente para realizar la electrodeposición de zinc. Ésto implica que el electrodo de trabajo más conveniente es el aluminio, además de ser un material común y de fácil accesibilidad.

2.4 Materiales utilizados para la construcción del prototipo.

Una vez concluido con el diseño del prototipo, se procede a la construcción del mismo; seleccionando los siguientes materiales:

2.4.1 Material de los compartimentos y el distribuidor de flujo.

Los compartimentos y el distribuidor de flujo de la celda están trabajados en un material

macizo de PTFE (Politetrafluroetileno) Nylon 6 MGS conocido técnicamente como Teflón, cuyas especificaciones técnicas se detallan en el siguiente cuadro:

PROPIEDADES FISICAS Y	UNIDAD	NORMA	NYLON
QUÍMICAS			6 MGS
Paso especifico	ar/cm ³	DIN 53479	1 1 /
1 eso específico	gi/ciii	ASTM D792	1,14
Temperatura máxima y mínima	°C	ISO 1183	100
Tención de ruptura	Мра	ASTM D695	90
Módulo de elasticidad	Мра	ASTM D696	1700
Calor especifico	J/°Kg		1,7
Punto de fusión	°C	DIN 53461	220
Constante dieléctrica		DIN 53483	38
Constante dielectrica	-	ASTM D150	3,0
Pasistividad aláctrica	ohm/cm^2	DIN 53482	10 ¹³
	UIII/CIII	ASTM D257	10
Resistencia a ácidos fuertes	-	ASTM D543	NO
Resistencia a bases fuertes	-	ASTM D544	SI

Tabla II-9 Propiedades fisicoquímicas de Politetrafluroetileno.

Fuente: MGS Industria y comercio de plásticos Ltda. 2017.

2.4.2 Material de electrodos.

Para la investigación correspondiente, se utiliza una aleación de aluminio metálico, como electrodo de trabajo que presenta las siguientes características fisicoquímicas:

Tabla II-10									
Características fisicoquímicas del electrodo de trabajo.									
COMPOSICIÓN QUÍMICA DE ALUMINIO									
ALEACIÓN	ALEACIÓN Si Fe Cu Mn Mg Cr Zn Ti Al								
%	0.2	0.35	0.1	0.1	0.45	0.1	0.1	0.1	98.5

PROPIEDADES FÍSICAS DE ALUMINIO								
ALEACIÓN	Densidad (g/cm3)	Coeficiente de dilatación (1/°C)	Conductividad térmica (W/m °K)	Resistividad 20 °C (ohm/cm ²)				
	2,7	23,6	209	2,67				

Fuente: Furukawa, PFK 2017.

Como contra electrodo se utiliza plomo metálico, comúnmente este metal no es puro; sino que lleva diferentes aleaciones para una mejor conducción de la electricidad y una mejor aplicación. Presenta las siguientes características:

Tabla II-11 Características fisicoquímicas del contra electrodo.

COMPOSICIÓN QUÍMICA DE PLOMO				
ALEACIÓN	Plata	Calcio	Estroncio	Plomo
%	0,2	0,1	0,2	99,5

PROPIEDADES FÍSICAS DE PLOMO				
ALEACIÓN	Densidad (g/cm3)	Coeficiente de dilatación (1/°C)	Conductividad térmica (W/m °K)	Resistividad 20 °C (ohm/cm ²)
	11,34	29*10-6	34,9	20,6

Fuente: BATEBOL, S.A. 2017.

2.4.3 Material de membrana.

El material que se utiliza como membrana de intercambio iónico es un producto sintético con un grado elevado de intercambio de cationes que presenta las siguientes características:

Características de la membrana de intercambio catiónico.		
ТІРО	MEMBRANA DE INTERCAMBIO CATIÓNICO GRADO ESPECIAL CIMS	
CARACTERÍSTICAS	Permiselectivo catiónico	
RESISTENCIA (ohm cm ²)	1.8	
FUERZA DE OTURA (MPa)	0,10	
ESPESOR (mm)	0,15	
APLICACIÓN	Separación de metales Producción de sales	
TEMPERATURA	60	
pH	0 - 10	

Tabla II-12 Características de la membrana de intercambio catiónico

Fuente: ASTOM Corporación, Tokio – Japón, 2017.

A continuación se muestra el prototipo del reactor experimental tipo filtro prensa para obtención electrolítica de zinc.

Figura 2-10 Compartimentos de la celda concluida.

Fuente: Imagen propia, Cortesía Laboratorio de Física UAJMS 2017.

1.- Compartimento anódico 2.- Compartimento catódico 3.- Empaquetadura

4.- Membrana de intercambio iónico 5.- Electrodo de trabajo 6.- Contra electrodo 7.- Distribuidor de flujo 8.- Niple.

2.5 Instalación eléctrica.

La interacción eléctrica en los reactores electroquímicos, experimenta e induce una transformación redox no espontaneo, por la transferencia de electrones en el electrodo, por lo que una fuente de alimentación de corriente continua es muy importante para tal efecto. Además para el control exacto del electrodo de trabajo la instalación eléctrica del reactor consta de un electrodo adicional de referencia que permite fijar el potencial en el electrodo de trabajo.

Fuente: Elaboración Propia, UAJMS 2017.

Figura 2-12

Montaje del sistema experimental.

Fuente: Toma Propio Cortesía Laboratorio de Física - UAJMS 2017.

- 1.- Fuente de corriente continua 2.- Multímetro analógico 3.- Multímetro digital
- 4.- Reactor electroquímico tipo filtro prensa 5.- Electrodo de referencia
- 6.- Reservorio de electrolito 7.- Bomba eléctrica de doce voltios.

2.6 Diseño factorial del experimento.

2.6.1 Factores en estudio.

Hipotéticamente el diseño factorial se basa en una serie de pruebas mediante cambios en variables de entrada del proceso para comprobar e identificar la influencia de las mismas en la respuesta de salida. Para el caso del estudio se selecciona los siguientes factores:

Tabla II-13				
Factores de diseño en estudio.				
NIVEL	CORRIENTE	TIEMPO DE	CAUDAL	
	ELÉCTRICA	ELECTRÓLISIS	(cm^3/s)	
	I (A)	(s)		
-	1,8	1800	8	
+	2	2400	12	
Exercise Elektrone side energie. UNIME 2017				

Fuente: Elaboración propia, UAJMS 2017.

Identificado los factores en estudio se realiza un diseño factorial de 2³ o sea (2 niveles y 3 factores), que presenta las siguientes combinaciones:

\mathbf{N}°	CORRIENTE	TIEMPO DE	CAUDAL Q
ENSAYOS	ELÉCTRICA	ELECTRÓLISIS	(cm ³ /s)
	I (A)	t (s)	
1	-	-	-
2	+	-	-
3	-	+	-
4	+	+	-
5	-	-	+
6	+	-	+
7	-	+	+
8	+	+	+

Tabla II-14 1.

Fuente: Elaboración propia, UAJMS 2017.

Cada ensayo presenta su respectiva réplica, por lo tanto se tiene 16 unidades experimentales.

Una vez instalado el prototipo experimental, se ajusta el flujo volumétrico para el
nivel requerido y también el voltaje aplicado mediante un potencióstato. La intensidad de corriente se monitorea con un multímetro analógico; el potencial de electrodo de trabajo se determina mediante el uso de un tercer electrodo, llamado de referencia, con estos datos operacionales y trabajando a un determinado tiempo se procede con las pruebas y su respectiva replica para cada ensayo.

NÚMERO DE ENSAYOS	CORRIENTE ELÉCTRICA I (A)	TIEMPO DE ELECTRÓLISIS t (s)	CAUDAL Q (cm ³ /s)
<u>1a</u>	1,8	1800	8
2a	2	1800	8
<u> </u>	1,8	2400	8
4 a	2	2400	8
5a	1.8	1800	12
<u>6a</u>	2	1800	12
7 a	1,8	2400	12
8 a	2	2400	12
1b	1,8	1800	8
2b	2	1800	8
3b	1,8	2400	8
4b	2	2400	8
5b	1,8	1800	12
6b	2	1800	12
7b	1,8	2400	12
8b	2	2400	12

Tabla II-15
Diseño factorial 2^3 con niveles operativos de los factores y su réplica.

Fuente: Elaboración propia, UAJMS 2017.

Para cada ensayo se obtiene una cantidad de producto electrodepositado, el cual es determinado experimental y teóricamente.

CAPÍTULO III RESULTADOS Y DISCUSIÓN

3.1 Resultados obtenidos.

El análisis cualitativo inicial de la electrodeposición obtenido de acuerdo a los ensayos, a un nivel menor y a un nivel mayor, muestra un efecto significativo, cuyo resultado se hace evidente con el aspecto que presentan los depósitos; tal cual muestra la figura 3-1. Donde se puede observar, cualitativamente las líneas de flujo que hace más notable en comparación del uno y el otro; y su aspecto morfológico electrodepositado se puede diferenciar con la aspereza que presentan los mismos.

Fuente: Toma propia, Cortesía Laboratorio de Física U.A.J.M.S. 2017.

Para el análisis cuantitativo de los depósitos obtenidos de cada ensayo y su respectiva réplica se hace notar mediante una variable respuesta como un parámetro operacional característico de los reactores electroquímicos como la eficiencia de corriente.

Cuantitativamente los valores obtenidos se determinan aplicando la ecuación (1-11) y (1-28) respectivamente.

A continuación se detalla en la tabla III-1 los resultados obtenidos.

Tabla III-1. Resultados obtenidos de cada combinación y su respectiva réplica.

	VARIABLES DE ENTRADA			VARIABLE RESPUESTA		
NÚMERO DE ENSAYOS	CORRIENTE ELÉCTRICA I (A)	TIEMPO DE ELECTRÓLISIS t (s)	CAUDAL Q (cm ³ /s)	MASA REAL DEPOSITADO m (g)	MASA TEÓRICO DEPOSITADO m (g)	EFICIENCIA DE CORRIENTE Ŋ _i (%)
1a	1,8	1800	8	0,526	1,098	47,944
2a	2	1800	8	0,703	1,220	57,669
3a	1,8	2400	8	0,578	1,464	39,511
4a	2	2400	8	1,074	1,626	66,010
5a	1,8	1800	12	0,666	1,098	60,634
ба	2	1800	12	0,728	1,220	59,654
7a	1,8	2400	12	0,755	1,464	51,556
8a	2	2400	12	0,800	1,626	49,210
1b	1,8	1800	8	0,531	1,098	48,399
2b	2	1800	8	0,727	1,220	59,580
3b	1,8	2400	8	0,608	1,464	41,540
4b	2	2400	8	1,044	1,626	64,196
5b	1,8	1800	12	0,679	1,098	61,891
6b	2	1800	12	0,742	1,220	60,842
7b	1,8	2400	12	0,776	1,464	53,025
8b	2	2400	12	0,794	1,626	48,823

Fuente: Elaboración propia UAJMS 2017.

3.2 Análisis del funcionamiento del reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.

Los experimentos de obtención de zinc que se detallan demostrando la diferencia cualitativa en sus depósitos obtenidos a diferentes niveles, son datos explícitos que permite abordar un análisis cuantitativo y detallado para el diseño definitivo y el funcionamiento apropiado del reactor experimental.

Figura 3-2 Funcionamiento del reactor experimental.

Fuente: Toma propia, Cortesía Laboratorio de Física U.A.J.M.S. 2017.

A continuación se detalla los resultados obtenidos de la aplicación del reactor experimental logrados de acuerdo a las ecuaciones deducidas. Los parámetros utilizados para la resolución de las ecuaciones son los obtenidos experimentalmente tomados como promedio de once valores de cada uno de los ensayos 4a y 4b respectivamente que representan la mayor eficiencia de corriente.

Resultados obtenidos de la aplicación del reactor experimental que representa mayor eficiencia.						
NUMERO	TIEMPO	POTENCIAL	CORRIENTE	CONCENTRACION	CO	NCENTRACION
DE	t (s)	MEDIDIO	MEDIDO	EXPERIMENTAL		TEÓRICO
MEDIDAS		$\mathbf{E}_{\mathbf{m}}\left(\mathbf{V}\right)$	$\mathbf{I}_{\mathbf{m}}\left(\mathbf{A}\right)$	C(g/l)		C(g/l)
1	0	-1,300	-2,950	32,685		39,595
2	240	-1,280	-2,875	32,489		39,303
3	480	-1,235	-2,775	32,227		39,012
4	720	-1,220	-2,730	31,966		38,724
5	960	-1,170	-2,650	31,770		38,438
6	1200	-1,125	-2,600	31,378		38,154
7	1440	-1,050	-2,475	31,247		37,872
8	1680	-0,965	-2,375	30,855		37,593
9	1920	-0,920	-2,290	30,724		37,315
10	2160	-0,855	-2,200	30,397		37,039
11	2400	-0,765	-2,000	30,070		36,766
NUMERO	PERFIL	DE CONC.	PERFIL DE	SOBREPOTENC	IAL	DENSIDAD DE
NUMERO DE	PERFIL EXPER	DE CONC. IMENTAL	PERFIL DE CONC.	SOBREPOTENCI DE ELECTROD	IAL OO	DENSIDAD DE CORRIENTE
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO	SOBREPOTENCI DE ELECTROD Ŋ _c (V)	IAL DO	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²)
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/C ₀)	SOBREPOTENCI DE ELECTROD Ŋ _c (V)	IAL DO	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²)
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional	SOBREPOTENCI DE ELECTROD η _c (V)	IAL 90	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²)
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional	SOBREPOTENCI DE ELECTROD η _c (V) 1	(AL)0),575	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional	SOBREPOTENCI DE ELECTROD Ŋ _c (V) 1 -(0)3	(AL)00),575),555	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional	SOBREPOTENCI DE ELECTROD η _c (V) 1 -0 33 -0 35 -0	0,575 0,555 0,510	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,056
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional	SOBREPOTENCI DE ELECTROD η _c (V) 1 -0 93 -0 85 -0 78 -0	AL 00 0,575 0,555 0,510 0,495	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (C _t /C _o) adimensional	SOBREPOTENCI DE ELECTROD η _c (V) 1 -0 3 -0 35 -0 78 -0 71	(AL),575),555),510),495),445	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055 -0,055 -0,053
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional 0,99 0,99 0,97 0,97 0,97	SOBREPOTENCI DE ELECTROD η _c (V) 1 -0 3 -0 35 -0 78 -0 54	AL 00 0,575 0,555 0,510 0,495 0,445 0,400	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055 -0,055 -0,053 -0,052
NUMERO DE MEDIDAS	PERFIL EXPER (C _t /C _o) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional 0,99 0,99 0,97 0,97 0,96	SOBREPOTENCI DE ELECTROD η _c (V) 1 -0 33 -0 35 -0 78 -0 54 -0 56	AL 00 0,575 0,555 0,510 0,495 0,445 0,400 0,325	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,055 -0,055 -0,053 -0,052 -0,050
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional 1 0,994 0,986 0,978 0,972 0,960 0,956 0,944	PERFIL DE CONC. TEÓRICO (C _t /C _o) adimensional 0,99 0,99 0,97 0,97 0,97 0,97 0,97 0,97	SOBREPOTENCI DE ELECTROD η_c (V) 1 -0 23 -0 35 -0 78 -0 54 -0 56 -0 49 -0	AL 00 0,575 0,555 0,510 0,495 0,445 0,400 0,325 0,240	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055 -0,055 -0,053 -0,052 -0,050 -0,050 -0,048
NUMERO DE MEDIDAS	PERFIL EXPER (Ct/Co) a	DE CONC. IMENTAL dimensional	PERFIL DE CONC. TEÓRICO (C_t/C_o) adimensional 0,99 0,97	SOBREPOTENCI DE ELECTROD η_c (V) 1 -0 3 -0 35 -0 78 -0 71 -0 54 -0 56 -0 49 -0 42 -0	AL 00 0,575 0,555 0,510 0,445 0,445 0,445 0,440 0,325 0,240 0,195	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055 -0,055 -0,053 -0,052 -0,050 -0,048 -0,046
NUMERO DE MEDIDAS 1 2 3 4 4 5 6 7 8 9 10	PERFIL EXPER (C _t /C _o) a	DE CONC. IMENTAL dimensional 1 0,994 0,994 0,986 0,978 0,972 0,960 0,956 0,956 0,944 0,940 0,930	PERFIL DE CONC. TEÓRICO (Ct/Co) adimensional 0,99 0,98 0,97 0,97 0,97 0,99 0,92 0,92 0,94 0,94 0,94 0,94	SOBREPOTENCI DE ELECTROD η_c (V) 1 -0 23 -0 35 -0 78 -0 71 -0 56 -0 56 -0 49 -0 42 -0 35 -0	AL 00 0,575 0,555 0,510 0,495 0,445 0,400 0,325 0,240 0,195 0,130	DENSIDAD DE CORRIENTE <i>i</i> (A/cm ²) -0,059 -0,058 -0,055 -0,055 -0,053 -0,052 -0,052 -0,050 -0,048 -0,046 -0,044

Tabla III-2 esultados obtenidos de la aplicación del reactor experimental que representa mayor eficiencia.

Fuente: Elaboración propia UAJMS 2017.

La variación de la concentración debido a la conversión de reactivo es un parámetro que refleja el funcionamiento del reactor con respecto al tiempo y a un determinado potencial del electrodo de trabajo. La variación de la concentración se determina aplicando la ecuación (1-31) del apartado anterior.

Figura 3-3

Diagrama de contorno, perfil de concentración en función del potencial medido y el tiempo.

Fuente: Elaboración propia en base a MINITAB- UAJMS 2017.

La figura 3-3 proporciona la variación de la concentración de zinc en la solución electrolítica a la salida del reactor a un determinado tiempo y potencial controlado, es decir, que a un potencial menos negativo que el inicial, la concentración de zinc disminuye en comparación al valor inicial; esto indica y corrobora, que la electrodeposición o la reducción de zinc se efectúan en el orden de -0,7 V.

Comparación de los perfiles de concentración para: a) experimental y teórico, b) diferentes caudales en base a los datos obtenidos de los ensayos 4a y 4b.

Fuente: Elaboración propia en base a MINITAB- UAJMS 2017.

En la figura 3-4 a) se detalla los perfiles de concentración adimensional con respecto al tiempo comparando entre lo experimental y teórico donde se observa que la discrepancia máxima entre ambos es la diferencia en una centésima. Se hace notar también en la figura 3-2 b) que los perfiles de concentración a diferentes caudales varían respecto al tiempo, en la que se observa que, conforme aumenta el flujo, la conversión es menor a la salida del reactor. 3.3 Análisis de las principales variables que influyen en el reactor experimental tipo filtro prensa para obtención electrolítico de zinc, a partir de sulfuro polimetálico.

El parámetro característico que permite una evaluación del reactor en particular es el coeficiente de transferencia de masa que engloba todo los fenómenos hidrodinámicos y su efecto en el mecanismo de transferencia de masa cuyo parámetro se obtiene experimentalmente y con la resolución de las ecuaciones (1-37) y (1-38).

CAUDAL Q (cm ³ /s)	VELOCIDAD FLUIDO v _f (cm/s)	NÚMERO DE REYNOLDS Re	NÚMERO DE SHERWOOD (Sh)	COEFICIENTE DE TRANSFERENCIA DE MASA k _m (cm/s)
6	1	146,581	1,612E+01	5,848E-05
7	1,167	171,011	1,696E+01	6,153E-05
8	1,333	195,491	1,772E+01	6,431E-05
9	1,5	219,871	1,843E+01	6,685E-05
10	1,667	244,301	1,901E+01	6,922E-05
11	1,833	268,731	1,969E+01	7,143E-05
12	2	293,161	2,026E+01	7,351E-05

Figura 3-5

Tabla III-3 Coeficiente de transferencia de masa.

Fuente: Elaboración propia UAJMS 2017.

Fuente: Toma propia, Cortesía Laboratorio de Física U.A.J.M.S. 2017.

Coeficiente de transferencia de masa a) en función del número de Reynolds b) Diagrama de contorno en función de Reynolds y caudal.

Fuente: Elaboración propia en base a MINITAB- UAJMS 2017.

La figura 3-6 a) proporciona los datos de coeficiente de transferencia de masa en función del número de Reynolds, donde establece que conforme Reynolds aumenta, el valor absoluto de las pendientes va en incremento; corroborando que un cambio en la hidrodinámica ocasiona un cambio en el coeficiente de transferencia de masa. Por otra parte, a través del análisis del gráfico de contorno figura 3-6 b) se observa que a medida incrementa caudal y Reynolds, el coeficiente de transferencia de masa también aumenta. Los valores obtenidos están en el orden de 10⁻⁵ respectivamente.

Otra variable que influye en el reactor experimental es la densidad de corriente, una variable muy importante que produce una variación en la polarización del cátodo y por consiguiente el valor de penetración.

Los parámetros necesarios para determinar la densidad de corriente se obtiene según característica y geometría del electrodo de trabajo y el control externo de intensidad de corriente que fluye a través del circuito.

Figura 3-7 Densidad de corriente en función del sobre potencial catódico.

Fuente: Elaboración propia en base a MINITAB- UAJMS 2017.

El análisis de la electrodeposición obtenidos del experimento de mayor eficiencia de corriente se representa en la figura 3-7 mediante el efecto significativo de la densidad de corriente y el sobrepotencial catódico donde se observa que el potencial medido inicialmente es más negativo que el potencial medido después de la deposición de zinc, proporcionando una densidad de corriente límite de 0,04 A/cm².

3.4 Calidad del producto obtenido del reactor experimental tipo filtro prensa para obtención electrolítico de zinc a partir de sulfuro polimetálico.

La calidad del zinc electrolítico es determinado específicamente por la pureza del material obtenido.

El zinc electrolítico obtenido en el reactor experimental tipo filtro prensa es enviado al centro de análisis de la Universidad Autónoma Juan Misael Saracho, cuyo resultado se presenta en la siguiente tabla.

Figura 3-8

Fuente: Toma propia, Cortesía Laboratorio de Física- UAJMS 2017.

Resultado del analisis del zinc electrolítico obtenido.						
PARÁMETRO MÉTODO DE ENSAYO		UNIDAD	RESULTADO			
Zinc Total	SM 3500-ZnB	%	99,53			
Inertes		%	0,47			

Tabla III-4 Resultado del análisis del zinc electrolítico obtenido

Fuente: Centro de Análisis, Investigación y Desarrollo "CEANID" 2017.

3.4 Análisis estadístico del diseño factorial.

El análisis estadístico para el diseño experimental se realiza mediante el uso del paquete computacional SPSS que permite un tratamiento integrado de los datos y resultados confiables y representativos.

3.4.1 Análisis de la varianza.

El análisis de varianza es un proceso muy importante desarrollado por Fisher. La idea es determinar si las discrepancias entre las medias de los tratamientos son mayores dentro de lo que cabría esperar razonablemente que la variación que ocurre dentro de cada tratamiento. Proporciona información sobre las interacciones de las variables, así como su significancia.

CORRIENTE	TIEMPO DE	CAUDAL	EFICIENCIA
ELECTRICA	ELECTROLISIS	$Q (cm^3/s)$	DE
I (A)	t (s)		CORRIENTE
			I[] (%)
-	-	-	47,944
+	-	-	57,669
-	+	-	39,511
+	+	-	66,010
-	-	+	60,634
+	-	+	59,654
-	+	+	51,556
+	+	+	49,210
-	-	-	48,399
+	_	-	59,580
-	+	-	41,540
+	+	-	64,196
_	_	+	61,891
+	_	+	60,842
_	+	+	53,025
+	+	+	48,823

Tabla III-5

Datos con unidades codificadas de los factores de entrada y el valor de variable respuesta para el análisis de varianza.

Fuente: Elaboración propia UAJMS 2017.

Los factores de entrada que es representado en la tabla III-5 proporcionan las variables que intervienen en la variable respuesta, además representa el valor codificado de cada nivel y el número de ensayos realizados para cada nivel.

Tabla III-6					
Factores inter-sujetos.					
		N			
Corriente	-	8			
	+	8			
Tiempo	-	8			
	+	8			
Caudal	-	8			
	+	8			

Fuente: Elaboración propia en base a SPSS- UAJMS 2017.

Tabla III-7
Análisis de varianza (ANOVA).

Pruebas de efectos inter-sujetos							
Variable dependiente: Eficiencia							
	Tipo III de						
	suma de		Media				
Origen	cuadrados	gl	cuadrática	F	Sig.		
Modelo corregido	889,734 ^a	6	148,289	17,702	,000		
Intersección	47358,900	1	47358,900	5653,548	,000		
Corriente	236,268	1	236,268	28,205	,000		
Tiempo	114,180	1	114,180	13,630	,005		
Caudal	27,004	1	27,004	3,224	,106		
Corriente * Tiempo	35,195	1	35,195	4,201	,071		
Corriente * Caudal	386,496	1	386,496	46,139	,000		
Tiempo * Caudal	90,592	1	90,592	10,815	,009		
Error	75,392	9	8,377				
Total	48324,025	16					
Total corregido	965,126	15					
a R al cuadrado = 92	22 (R al cuad	rado aiusta	do = .870				

a. R al cuadrado = ,922 (R al cuadrado ajustado = ,870) *Fuente: Elaboración propia en base a SPSS- UAJMS 2017.*

El análisis que presenta la tabla III-6 correspondiente a las pruebas de efectos intersujetos, posibilita designar las variables más significantes con una confianza del 95% y una significancia menor a 5%. Para el presente estudio, el análisis indica que los factores significantes son corriente, tiempo, la interacción corriente*caudal y la interacción tiempo*caudal; mientras que el caudal y la interacción corriente*tiempo no son significativos esto debido a que su significancia es mayor a 0,05.

Sin embargo, para la representación más clara del análisis de varianza, se establece una representación mediante un gráfico normal de los factores más significantes que permite y proporciona en síntesis los efectos más extremos del experimento.

Figura 3-9 Gráfico normal de efecto estándar para Eficiencia de corriente.

Fuente: Elaboración propia en base a MINITAB- UAJMS 2017.

Como se puede observar los efectos más significativos son: corriente, tiempo, la interacción corriente*caudal y la interacción tiempo*caudal.

3.4.2 Análisis de regresión.

El análisis de regresión permite generar un modelo matemático para describir la relación estadística entre las variables de entrada y la variable respuesta también permite predecir nuevas observaciones.

Para el análisis de regresión del presente estudio se introduce las variables corriente, caudal y la interacción entre éstas.

Variables introducidas para el análisis de regresión.						
Variables introducidas/eliminadas ^a						
	Variables	Variables				
Modelo	introducidas	eliminadas	Método			
1	Tiempo*Caudal,		Introducir			
	Corriente*Caudal,					
Tiempo, Corriente ^b						
a. Variable dependiente: Eficiencia						
b. Todas	las variables solicitad	as introducida	ıs.			
Fuente: E	Elaboración propia en	base a SPSS-	UAJMS 2017			

Tabla III-8

Resumen del modelo de análisis de regresión.							
	Resumen del modelo ^b						
			R cuadrado	Error estándar de			
Modelo	R	R cuadrado	ajustado	la estimación			
1	,926 ^a	,857	,806	3,53669			
a. Predic	a. Predictores: (Constante), Tiempo*Caudal, Corriente*Caudal,						
Tiempo, Corriente							
b. Variat	ole dependi	ente: Eficiend	cia				
Г / Т							

Tabla III-9

Fuente: Elaboración propia en base a SPSS- UAJMS 2017.

Anansis de varianza para el anansis de regresión.								
	ANOVA ^a							
Suma de Media								
Mode	elo	cuadrados	gl	cuadrática	F	Sig.		
1	Regresión	827,548	4	206,887	16,540	,000 ^b		
	Residuo	137,590	11	12,508				
	Total	965,138	15					
a. Variable dependiente: Eficiencia								
b. Predictores: (Constante), Tiempo*Caudal, Corriente*Caudal, Tiempo,								
Corri	Corriente							

Tabla III-10 Análisis de varianza para el análisis de regresión

Fuente: Elaboración propia en base a SPSS- UAJMS 2017.

Coenciences del modelo inatematico.									
	Coeficientes ^a								
							Interv	alo de	
		Coeficientes no		Coeficientes			confia	nza de	
	Modelo	estanda	arizados	estandarizados			95.0%	para B	
			Error				Límite	Límite	
		В	estándar	Beta	t	Sig.	inferior	superior	
1	(Constante)	54,405	,884		61,532	,000	52,459	56,351	
	Corriente	3,843	,884	,495	4,346	,001	1,897	5,789	
	Tiempo	-2,671	,884	-,344	-3,021	,012	-4,617	-,725	
	Corriente*Caudal	-4,915	,884	-,633	-5,559	,000	-6,861	-2,969	
	Tiempo*Caudal	-2,380	,884	-,306	-2,691	,021	-4,326	-,434	
a. V	ariable dependiente: I	a. Variable dependiente: Eficiencia							

Tabla III-11 Coeficientes del modelo matemático.

Fuente: Elaboración propia en base a SPSS- UAJMS 2017.

Los resultados de la regresión indica que las variables Tiempo, Corriente y la interacción Tiempo*Caudal, Corriente*Caudal, son significativos según los valores que presenta su significancia que son menores a 0,05. Dichas variables expresan el 85,7% respecto a la varianza de eficiencia de corriente que proporciona el resumen del modelo representado en la tabla III-9

De acuerdo a los coeficientes que se indica en la tabla III-11, el modelo matemático de la regresión es la siguiente:

Eficiencia = 54,405 + 3,843 Corriente – 2,671Tiempo – 4,915Corriente*Caudal – 2,380Tiempo*Caudal

En base a la ecuación antes mencionada se establece que por cada aumento de un Amperio de corriente, se espera que el porcentaje de eficiencia de corriente aumente en un 3,843%.

3.5 Diseño definitivo del reactor.

De la manera que se llevó acabo el diseño preliminar en el apartado anterior, de la misma forma se prosigue con el diseño definitivo del reactor, recurriendo a los datos experimentales obtenidos para la mejor dimensión geométrica y características que corresponde al trabajo. A continuación se detalla los datos fisicoquímicos para el diseño definitivo del reactor experimental de obtención electrolítico de zinc.

Datos experimentales para el diseño definitivo.						
PARAMETRO	UNIDAD	RESULTADO				
Zinc disuelto (Zn^{2+})	g/l	39,595				
Temperatura	T (°K)	298				
Viscosidad	μ (g/cm s)	0,015				
Densidad	(g/cm^3)	1,136				
Cte. Gral. de los gases	R (J/Kmol)	8,31447				
Cte. de Faraday	F (C/mol)	96500				
Movilidad iónica (Zn ²⁺)	u (m ² /sV)	5,47E-08				
Intensidad de corriente	A (mA)	2000				
Coef. Transf. de masa	k _m (cm/s)	6,431E-05				
Densidad de corriente	$i (\text{mA/cm}^2)$	40				
Volumen	$V (cm^3)$	60				
Flujo volumétrico	$Q (cm^3/s)$	8				
1						

Tabla III-12 tos experimentales, para el diseño definitivo

Fuente: Elaboración propia, UAJMS 2017.

3.5.1 Cálculo de las dimensiones internas de los compartimentos de la celda.

Según la escala tecnológica de reactores electroquímicos del apartado anterior Figura 1-2 y el valor experimental de densidad de corriente de obtención de zinc, se procede a los cálculos de las dimensiones que caracterizan al reactor experimental tipo filtro prensa de obtención electrolítico de zinc.

Las dimensiones internas de los compartimentos están relacionados con el tamaño o la superficie del electrodo que se determina con la ecuación (1-16).

$$A = \frac{l}{i} \qquad (1 - 16)$$
$$A = \frac{2000 \ mA}{40 \ \frac{mA}{cm^2}} = 50 \ cm^2$$

A * a = V

$$a = \frac{60}{50} \frac{cm^3}{cm^2} = 1,2 \ cm$$

Por lo tanto las dimensiones internas del compartimento de la celda presentan los siguientes valores:

Dimensiones internos de los compartimentos de la celda para diseño final. **ALTURA** BASE AalCHO **COMPARTIMENTO** L (cm) B (cm) a (cm) 10 5 1,2 Anódico 10 5 1,2 Catódico Anódico 10 5 1,2

Tabla III-13

Fuente: Elaboración propia, UAJMS 2017.

3.5.2 Cálculo de los parámetros geométricos característicos de los compartimentos.

Los parámetros geométricos característicos de los compartimentos se determinan de acuerdo a las dimensiones internas que presentan los mismos aplicando la ecuación

(1-45).

$$d_e = \frac{4Ba}{2B + 2a} \qquad (1 - 45)$$
$$d_e = \frac{4 * 5cm * 1,2cm}{2 * 5cm + 2 * 1,2cm} = 1,935 cm$$

El régimen de flujo en el reactor se determina tomando en cuenta el caudal de alimentación correspondiente a la parte experimental que representa la mayor eficiencia y para el compartimento anódico se toma en cuenta los parámetros fisicoquímicos del electrolito soporte (Anolito) ver Anexo II. Aplicando la ecuación (1-46) y (1-34) se tiene:

$$v = \frac{Q}{Ba} \qquad (1 - 46)$$

$$v = \frac{Q}{Ba} = \frac{8\frac{cm^3}{s}}{5cm * 1,2cm} = 1,333\frac{cm}{s}$$

$$R_e = \frac{vd_e\rho}{\mu} \qquad (1 - 34)$$

$$R_e = \frac{1,333\frac{cm}{s} * 1,935cm * 1,136\frac{g}{cm^3}}{0,015\frac{g}{cm * s}} = 195,441$$

La expresión del factor de corrección geométrico para flujo laminar totalmente desarrollado se determina con la ecuación (1-43).

$$\gamma = \frac{a}{B} \qquad (1 - 43)$$

$$\gamma = \frac{1,2cm}{5cm} = 0,24$$

El valor de longitud adimensional se determina a partir de la ecuación (1-44)

$$L_e = \frac{d_e}{L}$$
 (1 - 44)
 $L_e = \frac{1,935cm}{10cm} = 0,194$

Adicionalmente se determina la caída de presión en el reactor aplicando la figura 1-4

Para una velocidad de flujo de 1,333cm/s, la figura indica un $\Delta P = 0,012 \ bar$ o su equivalente a 1200 Pa.

COMPARTIMENTO	DIÁMETRO HIDRÁULICO de (cm)	FACTOR DE CORRECCIÓN	LONGITUD ADIMENCIONAL L _e
Anódico	1,935	0,24	0,194
Catódico	1,935	0,24	0,194
Anódico	1,935	0,24	0,194

 Tabla III-14

 Parámetros geométricos de los compartimentos de la celda para diseño final.

Fuente: Elaboración Propia, UAJMS 2017.

3.5.3 Cálculo de dimensiones de la placa distribuidor de flujo.

La placa del distribuidor de flujo presenta un área total igual a la base por la anchura que muestra la dimensión interna del reactor que es determinado aplicando la siguiente ecuación:

 $A_{t_a} = B * a$

 $A_{t_d} = 5cm * 1,2cm = 6cm^2$

La velocidad en los orificios se determina aplicando la ecuación (1-47).

$$v_{or} = \varsigma_{or} \left(\frac{2\Delta P_d}{\rho_f}\right)^{1/2} \qquad (1 - 47)$$

$$\Delta P_{\alpha} = 0.3 \Delta P \qquad (1 - 48)$$

$$\Delta P_d = 0.3 * 1200 Pa = 360Pa$$

$$v_{or} = 0.7 \left(\frac{2 * 360Pa}{1136\frac{kg}{m^3}}\right)^{1/2} = 0.557728\frac{m}{s} = 55,728\frac{cm}{s}$$

Para un diámetro específico (0,15 cm) de la placa distribuidor, el número de orificios se calcula aplicando la ecuación (1-49).

$$\frac{v}{v_{or}} = \frac{\pi}{4} \frac{d_{or}^2}{Ba} N_{or} \qquad (1 - 49)$$

$$N_{or} = \frac{4 * 5cm * 1,2cm}{3,14 * 0,15^2 cm^2} \frac{1,333}{55,728} \frac{cm}{s} = 8$$

$$Nf_{or} = \frac{\gamma}{N_{or}} 100 * s \qquad (1 - 50)$$

$$Nf_{or} = \frac{0,24}{8} 100 * 0,8 = 2$$

Tabla III-15 Dimensionamiento del distribuidor de flujo de la celda para diseño final.

COMPARTIMENTO	ÁREA TOTAL DISTRIBUIDOR A _{td} (cm ²)	DIÁMETRO DE ORIFICIO d _{or} (cm)	NÚMERO DE ORIFICIOS N _{or}	NÚMERO DE FILAS DE ORIFICIOS N _{for}
Anódico	6	0,15	8	2
Catódico	6	0,15	8	2
Anódico	6	0,15	8	2

Fuente: Elaboración Propia, UAJMS 2017.

3.6 Especificaciones técnicas del reactor experimental tipo filtro prensa para obtención electrolítico de zinc.

Las especificaciones técnicas del reactor experimental tipo filtro prensa para obtención electrolítico de zinc, asumiendo condiciones de operación estacionaria se detalla en la siguiente tabla.

Tabla III-16

Especificaciones del reactor experimental tipo filtro prensa para obtención electrolítico de zinc.

ESPECIFICACIONES DEL REACTOR EXPERIMENTAL						
PARÁMETRO	VALOR	UNIDAD				
Altura	10	cm				
Base	5	cm				
Ancho	1,2	cm				
Área del electrodo	50	cm ²				
Diámetro hidráulico	1,935	cm				
Factor de corrección	0,24	und				
Longitud adimensional	0,194	und				
Área total del distribuidor	6	cm^2				
Diámetro del orificio distribuidor	0,15	cm				
Número de orificios distribuidor	8	und				
Número de filas de orificios distribuidor	2	und				
VARIABLES OPERATIVAS DEL REAC	CTOR EXPE	RIMENTAL				
PARÁMETRO	VALOR	UNIDAD				
Potencial aplicado	4,5	V				
Densidad de corriente	40	mA/cm ²				
Concentración del catolito	0,606	mol/l				
pH del catolito	0,5	-				
Caudal	8	cm ³ /s				
Tiempo	2400	S				

Fuente: Elaboración propia, UAJMS 2017.

Figura 3-10 Despiece del reactor experimental tipo filtro prensa de obtencion electrolítico de zinc.

Fuente: Elaboración propia UAJMS 2017.

Tabla III-17 Análisis económico del proyecto.

ANÁLISIS ECONÓMICO							
PROYECTO	PROYECTO "Diseño y construcción de un reactor experimental tipo filtro prensa de obtención electrolítico de zinc"						
ACTIVIDAD	ACTIVIDAD Construcción "Compartimento Anódico 1"						
MONEDA	MONEDA Bs.						
MATERIALES							
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Placa de tef	lón e 20 mm	m ²	0,02	10000	200		
2 Placa de tef	lón e 5 mm	m ²	0,00144	4000	5,76		
3 Electrodo de	e plomo e 1mm	kg	0,25	1000	250		
4 Empaquetad	lura e 1mm	m ²	0,02	1000	20		
5 pernos de ap	priete	pza	4	3	12		
6 niple 1/4 "	1	pza	2	16	32		
7 banana hem	bra	pza	1	5	5		
8 Oring		pza		I,5	507.9		
MANO DE OPP	Δ		IUIAL	MATERIALES	527,8		
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Tornero		Hr	6	16.67	100.02		
2 Fresador		Hr	6	20,8	124,8		
3 Ayudante		Hr	6	8,58	51,48		
TOTAL MANO DE OBRA					276,3		
MAQUINARIA	Y HERRAMIENTAS						
DESC	RIPCIÓN		CANTIDAD	PRECIO	PRECIO		
		UNIDAD	CANIDAD	UNITARIO	PARCIAL		
1 Torno		Hr	6	80	480		
2 Fresa		Hr	6	110	660		
CASTOS CENT		TOTAL MAQ	UINARIA Y HE	RRAMIENTAS	1140		
GASTOS GENE	RALES	r		DDECIO	DDECIO		
DESC	RIPCIÓN	UNIDAD	CANTIDAD	INITADIO			
1 Romba aláo	trico 12 V	D 70	1	220	PARCIAL 320		
2 Tanque rece	entor	pza pza	1	<u> </u>	60		
3 Tubo de PV		m pza	2	5	10		
5 1000 001 1			TOTAL GASTOS	S GENERALES	390		
GASTOS DE INC	GENIERIA (PERSON	NAL CALIFIC	CADO)		070		
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Consultor (I	Doc. Materia)	Hr	26	30,00	780		
2 Investigador	r (Universitario)	Hr	280	21,00	5880		
3 Auxiliar de	laboratorio	Hr	26	7,16	186		
TOTAL GASTOS DE INGENIERIA 6846,16							
	TOTAL COSTO UNITARIO 9180,2						

ANÁLISIS ECONÓMICO							
PROYECTO	PROYECTO "Diseño y construcción de un reactor experimental tipo filtro prensa de obtención electrolítico de zinc"						
ACTIVIDAD Construcción "Compartimento Anódico 2"							
MONEDA	MONEDA Bs.						
MATERIALES		T	r	DDECIO	DDECIO		
DESC	RIPCIÓN	UNIDAD	CANTIDAD	UNITARIO	PRECIO		
1 Placa de tef	lón e 20 mm	m ²	0,02	10000	200		
2 Placa de tef	lón e 5 mm	<u>m²</u>	0,00144	4000	5,76		
3 Electrodo d	e plomo e 1mm	kg	0,25	1000	250		
4 Empaquetad	dura e 1mm	<u>m²</u>	0,02	1000	20		
5 pernos de aj	priete	pza	4	3	12		
6 niple 1/4 "		pza	2	16	32		
7 banana hem	ibra	pza	1	5	5		
8 Oring		pza	2	1,5	3		
	TOTAL MATERIALES 527,8						
MANO DE OBR	A	T	r	DDDGIO			
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Tornero		Hr	6	16,67	100,02		
2 Fresador		Hr	6	20,8	124,8		
3 Ayudante		Hr	6	8,58	51,48		
TOTAL MANO DE OBRA				276,3			
MAQUINARIA	Y HERRAMIENTAS) 1					
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Torno		Hr	6	80	480		
2 Fresa		Hr	6	110	660		
·		TOTAL MAQ	UINARIA Y HE	RRAMIENTAS	1140		
GASTOS GENE	RALES						
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Bomba eléc	trica 12 V	pza	1	320	320		
2 Tanque rece	eptor	pza	1	60	60		
3 Tubo de PV		m	2	5	10		
·			TOTAL GASTO	S GENERALES	390		
GASTOS DE INGENIERIA (PERSONAL CALIFICADO)							
DESC	RIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL		
1 Consultor ()	Doc. Materia)	Hr	26	30,00	780		
2 Investigado	r (Universitario)	Hr	280	21,00	5880		
3 Auxiliar de	laboratorio	Hr	26	7,16	186		
	TOTAL GASTOS DE INGENIERIA 6846 16						
			TOTAL COS	TO UNITARIO	9180.2		
l							

	ANÁLISIS ECONÓMICO					
PROYECTO	PROYECTO "Diseño y construcción de un reactor experimental tipo filtro prensa de obtención electrolítico de zinc"					
ACTIVIDAI	ACTIVIDAD Construcción "Compartimento Catódico"					
MONEDA	Bs.					
MATERIAL	ES					
I	DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL	
1 Placa	de teflón e 20 mm	m ²	0,02	10000	200	
2 Placa	de teflón e 5 mm	m ²	0,00144	4000	5,76	
3 Electr	odo de Aluminio e 1mm	kg	0,25	1000	250	
4 Memb	rana catiónico	m ²	0,04	3500	140	
5 Empa	quetadura e 1mm	m ²	0,02	1000	20	
6 pernos	de apriete	pza	4	3	12	
7 niple	/4 "	pza	2	16	32	
8 banan	a hembra	pza	1	5	5	
9 Oring		pza	2	1,5	3	
		С	OSTO TOTAL N	IATERIALES	667,8	
MANO DE O	OBRA					
I	DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL	
1 Torne	0	Hr	6	16,67	100,02	
2 Fresac	lor	Hr	6	20,8	124,8	
3 Ayuda	inte	Hr	6	8,58	51,48	
COSTO TOTAL MANO DE OBRA 276,3					276,3	
MAQUINAI	RIA Y HERRAMIENTAS	5			·	
I	DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL	
1 Torne)	Hr	6	80	480	
2 Fresa		Hr	6	110	660	
TOTAL MAQUINARIA Y HERRAMIENTAS 1140						
GASTOS GI	ENERALES				·····	
I	DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL	
Electr 1 Ag/Ag	odo de Referencia Cl	pza	2	220	440	
2 Bomb	a eléctrica 12 V	pza	1	320	320	
3 Tanqu	e receptor	pza	1	60	60	
		Т	OTAL GASTOS	GENERALES	820	
GASTOS DE INGENIERIA (PERSONAL CALIFICADO)						
I	DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO PARCIAL	
1 Consu	ltor (Doc. Materia)	Hr	26	30,00	780	
2 Invest	igador (Universitario)	Hr	290	21,00	6090	
3 Auxili	ar de laboratorio	Hr	26	7,16	186	
TOTAL GASTOS DE INGENIERIA 7056						
	TOTAL COSTO UNITARIO 9960,					

ANÁLISIS ECONÓMICO								
PRESUPUESTO GENERAL DE OBRA								
MONEDA Bs.								
ÍTEM	DESCRIPCIÓN	PRECIO UNITARIO NUMERAL	PRECIO UNITARIO LITERAL					
1	Construcción "compartimento anódico 1"	9180,22	Nueve mil ciento ochenta 22/100					
2	Construcción "compartimento anódico 2"	9180,22	Nueve mil ciento ochenta 22/100					
3	Construcción "compartimento catódico"	9960,22	Nueve mil novecientos sesenta 22/100					
4								
5								
6								
7								
8								
9								
10								
PRECIO TOTAL28320,66Veintiocho mil trecientos veinte 66/100								

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1Conclusiones.

Se diseñó y construyó un reactor experimental tipo filtro prensa de obtención electrolítico de zinc con los mejores parámetros experimentales de tres compartimentos, un importante compartimento central que aloja al electrodo de trabajo con un volumen de 60 cm^3 .

La disolución electrolítica que se alimenta al compartimento catódico del reactor experimental, se preparó a partir de sulfuro polimetálico, cuya concentración obtenido es de 39,959 g/l de zinc disuelto y una conductividad de 168,7µS/cm.

El diseño del reactor tipo filtro prensa de obtención electrolítico de zinc a partir de sulfuro polimetálico Blenda, (ZnS) está sujeto en base a la escala tecnológica de reactores electroquímicos de micro y macro electrolisis que demuestra parámetros verídicos obtenidos experimentalmente a partir del funcionamiento de un prototipo.

La operación del reactor experimental de modo continuo con recirculación, donde el perfil de concentración logrado, a un flujo de $8 \text{ cm}^3/\text{s}$ en un tiempo de 40 min representa la máxima conversión.

La definición de parámetros adimensionales que permiten analizar los efectos geométricos y electroquímicos en el funcionamiento del reactor define un coeficiente de transferencia de masa de $6,431 * 10^{-05}$ cm/s.

El análisis de la electrodeposición de mayor eficiencia de corriente se representa mediante el efecto significativo de la densidad de corriente y el sobrepotencial catódico donde se observa que el potencial medido inicialmente es más negativo que el potencial medido después de la deposición de zinc, proporcionando una densidad de corriente límite de 0,04 A/cm².

Es importante reconocer que los resultados que se obtiene, tienen un valor significativo, de la manera tal que representa como un modelo teórico-experimental que proporciona resultados cuantitativos de gran valor que permite el diseño definitivo y el desempeño del reactor experimental tipo filtro prensa de obtención electrolítico de zinc con una pureza del 99,53%.

4.2 Recomendaciones.

Es necesario enfatizar a futuros trabajos de investigación que el prototipo y el diseño definitivo del reactor experimental presenta una aplicación estricta, destinado sólo a la obtención de zinc electrolítico con los parámetros, característicos, inherentes a la aplicación directa de dicho estudio, caso contrario podría observarse desventajas en la adaptación y operación.

El problema más común que se observa en el desempeño del reactor, es la distribución de corriente en el electrodo de trabajo, cuyo efecto interviene en la eficiencia de corriente de dicho proceso que amerita otro estudio específico para optimizar el funcionamiento del reactor.

Es importante hacer conocer que el estudio experimental demostrado técnicamente, es una tecnología no convencional y amigable con el medio ambiente, tal cual lo caracteriza al reactor electroquímico tipo filtro prensa, un novedoso reactor de obtención electrolítico de zinc que se ajusta de manera eficaz en desmedro de la contaminación ambiental.

La atribución que conlleva a la noción o inquietud de llevar el presente estudio a escala industrial utilizando el reactor electrolítico tipo filtro prensa; amerita un estudio más detallado de prefactibilidad que permita desglosar las ventajas y/o desventajas que presente el proyecto de investigación precedente.

Referencias bibliográficas.

1. Atkins P. W., (1982). Solutions Manual for Physical Chemistry. Oxford Univ. Press, E.E.U.U.

2. Bard y Faulkner., (1995). *Electrochemical methods Fundamental and Applications*. John Wiley& Sons. N. Y. E.E.U.U.

3. Bockris y Reddy., (1977). *Modern Electrochemistry*. Plenum/Rosetta, E.E.U.U.

4. Castellan, G.W., (1998). *Fisicoquímica* Edit. Addison Wesley Iberoamericana S.A. E.E.U.U.

5. C. Ponce de León., (2014). *Caracterización de una celda Electroquímico polimérico*. [Artículo en línea]. pp. 6. Fecha de consulta: 8 de abril de 2016. Disponible en: https:// www.aidic.it/cet.

6. Frank Walsh., (2000). Un primer curso de ingeniería electroquímica. Ed. Club Universitario, España.

7. Frank C. Walsh., (**2016**, **abril 14**). *Diseño de un reactor electroquímico eficiente para síntesis y tratamiento ambiental*. [Artículo en línea]. pp. 7. Fecha de consulta: 11 de noviembre de 2016.

Disponible en: https://www.researchgate.net/publication/244534864.

8. F. Cceuret., (1992). *Introducción a la ingeniería electroquímica* Ed. Reverté España.

9. Henry Reyes Pineda, Valentín Pérez H. y Diego F. Arias M., (2013, mayo 4). *Comportamiento hidrodinámico de un reactor electroquímico tipo filtro prensa.*[Artículo en línea]. pp. 56-80. Fecha de consulta: 17 de agosto de 2016.
Disponible en: https://www.uniquindio.edu.co.

10. Instituto Tecnológico Geominero de España., (1991). *Minería Química*. Ed. ITGE. España.

11. John H. Perry., (1998). *Manual del Ingeniero Químico*, Editorial Reverté 6t^a Ed.España.

12. Koryta J. y Dvorak J., (1987). Principles of Electrochemistry. Wiley, E.E.U.U.

13. L. Antropov., (1977). Theoretical electrochemistry. Mir Publishers, Moscú.

14. Salomón Rivas V. y Federico Ahlfeld., (2009). Los minerales de Bolivia y sus parajes. Tomo I, Ed. La Paz, Bolivia.

15. T. Raju, C. Ahmed Basha., (2005, mayo 19). Diseño de una celda electroquímico y desarrollo del sistema para la oxidación electroquímico de Ce (III) / (Ce IV). [Artículo en línea]. pp 11. Fecha de consulta: 4 de junio de 2016. Disponible en: https:// www.elsevier.com/locate/cej.

ANEXO
PROCESO HIDROMETALÚRGICO PARA LA PREPARACIÓN DE LA DISOLUCIÓN ELECTROLÍTICA.

La trituración del mineral se llevó a cabo en el laboratorio de operaciones unitarias de la universidad LOU-UAJMS y posteriormente la molienda por el lapso de una hora, obteniendo un producto de granulometría fina que pasa la malla 230 ASTM.

Molienda del mineral polimetálico.

ALIMENTACIÓN 200	>	$\bigcirc \longrightarrow$	RECHASO 20 % 40 g	
		>	PRODUCTO 80 % 160 g	
base de cal. RELACIÓN (R/P)	200	8		
0.25				

Fuente: elaboración propia U.A.J.M.S. 2017.

El producto obtenido de la molienda se envía al laboratorio de análisis químico, cuyo resultado de los parámetros se detalla a continuación:

Potosi-Bolivia	LABORATORIO INFORME CÓDIGO	QUÍMICO CASTRO DE ENSAYO LQC. P18. F01	Nº 112391
PERTENECE A: LOTE N* MUESTRA DE: Ag - Zn - 1 CARACTERISTICAS DELS OBRE CÓDIGO DE LABORATURIO: FECHA DE PAQUETE:	EDWIN LOF SULFURO FECHA: FR 124 S/F	EZ MOYA DE Zinc 2015-10-07 ASCO CON TAPA 21	
	Ley de Ag 0,	19 DM	
	Ley de Zn 49	,83 %	
			1.2 MIO QUIN
DS RESULTADOS SOLO ESTÁN RELACIONA EÑOR CLIENTE VERIFIQUE LOS RESULTADO alle Periodista esquina Millares Nº 147	DOS CON EL PAQUETE OBJETO DE DS DEL INFORME DE ENSAYO ANTE Teléfono Fax 591 (2) 6227728	ENSAYO IS DE SU TRANSACCIÓN Fecha de Emisión: 2012/02/1	Ovimico Analitico Versión 2 Polivia
OS RESULTADOS SOLO ESTÁN RELACIONA EÑOR CLIENTE VERIFIQUE LOS RESULTADO alle Periodista esquina Millares Nº 147	DOS CON EL PAQUETE OBJETO DE DS DEL INFORME DE ENSAYO ANTE Teléfono Fax 591 (2) 6227728	ENSAYO IS DE SU TRANSACCIÓN Fecha de Emisión: 2012/02/1 12421	Químico Analítico O Versión 2 Polivita
DS RESULTADOS SOLO ESTÁN RELACIONA EÑOR CLIENTE VERIFIQUE LOS RESULTADO alle Periodista esquina Millares Nº 147 CÓCREO DE LABORATORIO. FECHA DE PAODETE.	DOS CON EL PAQUETE OBJETO DE DS DEL INFORME DE ENSAYO ANTE Teléfono Fax 591 (2) 6227728 S/F	ENSAYO IS DE SU TRANSACCIÓN Fecha de Emisión: 2012/02/1 12421	Químico Analitico O Versión 2 Polivita
DS RESULTADOS SOLO ESTÁN RELACIONA EÑOR CLIENTE VERIFIQUE LOS RESULTADO alle Periodista esquina Millares Nº 147 CÓDISO DE LABORATORIO FECHA DE PAODETE	DOS CON EL PAQUETE OBJETO DE DS DEL INFORME DE ENSAVO ANTE Teléfono Fax 591 (2) 6227728 S/F	ENSAYO IS DE SU TRANSACCIÓN Fecha de Emisión: 2012/02/1 12421 27,10 %	Químico Analitico Químico Analitico Versión 2 Polivita
DS RESULTADOS SOLO ESTÁN RELACIONA EÑOR CLIENTE VERIFIQUE LOS RESULTADO alle Periodista esquina Millares Nº 147 COMO DE LABORATORIO FECHA DE PAQUETE	DOS CON EL PAQUETE OBJETO DE DS DEL INFORME DE ENSAYO ANTE Teléfono Fax 591 (2) 6227728 S/F Ley de ŝ Ley de fe	ENSAYO IS DE SU TRANSACCIÓN Fecha de Emisión: 2012/02/1 12421 27,10 4,40	Químico Analitico Químico Analitico Versión 2 Polivita

Resultado de análisis químico del sulfuro polimetálico.

Fuente: Laboratorio Químico Castro Código LQC. P18.F01 ed. 2015.

Para realizar el balance estequiométrico se aplica la ecuación de conservación genérica:

$$S = E - R_x + P$$

Dónde:

E = Moles que entran

R = Moles que reaccionan

P = Moles producto de la reacción

S = Cantidad de moles que se obtiene

2		_		TOST	ACIÓN DI	EL SUL	FURO	POLIM	ETÁLIC	0				
	21	%												
	02	21	aire			SO2		2Zn-	+O2(g)=	2ZnO				
	N2	79			>	02			(0/					-
		100						4Fe+3	O2(g)=2	2Fe2O3	-			199
80	%											-	-	301
Zn	49,88		¥	<u> </u>				S+C	02(g)=SC	02(g)		3		5
Fe	4,4		м	IFLA		ZnO					-it-	110		1 AL
S	27,1	-	\rightarrow $\frac{1}{94}$	H°C	\rightarrow	Fe2O3						2.dma	11	
Ganga	18,62					Ganga					1			-
	100				Г	Automation in the			7			1000		
Base de	e cálculo:	80	g de sulfu	ro polime	tálico.							-	10.10	
								-						
Aire teório	co		4,898	mol		1	18th						-	
Aire en ex	xceso		1,029	mol										
Aire real a	alimentado	25	5,926	mol			Ľ d							
сомро	NENTE	PM	MOLES	EN	TRA	PROD	DUCE	REACO	CIONA			SALE		
				(mol)	(g)	(mol)	(g)	(mol)	(g)	(mol)	(g)	%	p/p
Zn		65,39	0,610	0,610	39,904	0,000	0,000	0,610	39,904	0,000				
Fe		55,847	0,063	0,063	3,520	0,000	0,000	0,063	3,520	0,000				
S		32,066	0,676	0,676	21,680	0,000	0,000	0,676	21,680	0,000				
O2		31,9988	1,029	1,244	39,822	0,000	0,000	1,029	32,911	0,216	6,911		5,768	
SO2		64,0648	0,676	0,000	0,000	0,676	43,315	0,000	0,000	0,676	43,3146		36,149	
ZnO		81,3894	0,610	0,000	0,000	0,610	49,668	0,000	0,000	0,610		49,668		41,451
Fe2O3		159,6922	0,032	0,000	0,000	0,032	5,033	0,000	0,000	0,032		5,033		4,200
Ganga			0,000	0,000	14,896	0,000	0,000	0,000	0,000	0,000		14,896		12,432
											50,23	69,596	41,92	58,08
TC	DTAL				119,822					0	119	,822	100),00

Balance esteo	miométrico	de la	tostación	del sulfuro	polimetálico.
Dalance corey	anomenico	ut la	costacion	uci suntui o	pominetaneo.

Fuente: elaboración propia U.A.J.M.S. 2017.

					LIXIVIA	CIÓN I	DE LA	CALCIN	JA					
69,596	%				920,838	%								
ZnO	71,365	А		B	H2SO4	13	Dens.	1,087	g/ml	ZnO	+H2SO4=	ZnSO4+H	120	
Fe2O3	7,231				H2O	87								
Ganga	21,403					100				Fe2O3+3	3H2SO4=]	Fe2(SO4)3	3+3H2O	_
Base de	100,00	69,596	g de calci	na.	H2SO4 ZnSO4 Fe(SO4)3 H2O Inertes						P			
COMPON	IENTE	PM	MOL	EN	TRA	REAC	CIONA	PROI	DUCE		SA	LE		
				(mol)	(g)	(mol)	(g)	(mol)	(g)	(mol)	(g)	%	Μ	
ZnO		81,379	0,610	0,610	49,668	0,610	49,668	0,000	0,000	0,000	0,000	0,000	0,000	
Fe2O3		159,68	0,032	0,032	5,033	0,032	5,0326	0,000	0,000	0,000	0,000	0,000	0,000	
H2SO4		98,07	0,705	1,221	119,709	0,705	69,127	0,000	0,000	0,516	50,582	5,107	0,592	
H2O		18,015	44,470	44,470	801,129	0,000	0,000	0,705	12,698	45,175	813,83	82,168	51,814	
ZnSO4		161,438	0,610	0,000	0,000	0,000	0,000	0,610	98,530	0,610	98,53	9,948	0,700	
Fe2(SO4)3		399,867	0,032	0,000	0,000	0,000	0,000	0,032	12,603	0,032	12,603	1,272	0,036	
Inertes					14,896						14,896	1,504		
TOTAL					990,4						990,4	100,0		

Balance estequiométrico de la lixiviación de la calcina.

Fuente: elaboración propia U.A.J.M.S. 2017.

Filtración de la solución obtenida de la lixiviación.

Fuente: elaboración propia U.A.J.M.S. 2017.

				PRES	IPITACIÓ	N DE J.	AROSI	ГА АМО	ONIACA	L					
975,542	%	Α		В	22,091	%	Dens.	0,9	g/ml			and the second	Barris		
Fe2(SO4)3	1,292				NH4OH	20						1			
ZnSO4	10,100				H2O	80							and for		
H2SO4	5,185	- I	Ť	-			3Fe2(S	04)3+1	0H2O+2	NH4OH=	=(NH4)2(S	6O4)4Fe6(OH)12+:	5H2SO4	
H2O	83,423														
	100,000			C	ZnSO4		2ZnSO	4+2H2C	+2NH4	OH=2Zn(OH)2+(N	H4)2SO4+	H2SO4		
					H2SO4										
					H2O		Fe2(SC)4)3+4H	20+2NI	H4OH=2	Fe(OH)3+	(NH4)2SC)4+2H2S	04	
					NH4OH										
Base de cái	lculo:	975,542	g de sol												
СОМРО	NENTE	PM		ENTRA		REACO	CIONA	PROI	DUCE			SA	LE		
			(n	nol)	(g)	(mol)	(g)	(mol)	(g)	(mol)	(g	g)		%	М
Fe2(SO4)3		399,867		0,0315	12,603	0,0315	12,603	0,000	0,000	0,000	0,000		0,000		0,000
ZnSO4		161,438		0,610	98,530	0,0006	0,099	0,000	0,000	0,610	98,431		9,867		0,694
H2SO4		98,07		0,516	50,582	0,000	0,000	0,0528	5,181	0,569	55,763		5,590	[0,647
H2O		18,015		46,16	831,500	0,106	1,904	0,000	0,000	46,050	829,60		83,157		52,439
NH4OH		35,046		0,126	4,418	0,022	0,758	0,000	0,000	0,104	3,660		0,367		0,119
(NH4)2(SO4)-	+4Fe6(OH)12	959,04		0,000	0,000	0,000	0,000	0,0105	10,075	0,011		10,075		1,020	0,012
Zn(OH)2		99,4		0,000	0,000	0,000	0,000	0,0006	0,061	0,001		0,061		0,006	0,001
(NH4)2SO4	· · · · · ·	132,134		0,000	0,000	0,000	0,000	0,000	0,040	0,000		0,040		0,004	0,000
											987,452	10,176	98,980	1,031	
T0TAL					997,63						997	,63	10	0,0	

Balance estequiométrico de precipitación de jarosita amoniacal.

Fuente: elaboración propia U.A.J.M.S. 2017.

Una vez obtenida la solución electrolítica se envía al centro de análisis de investigación y desarrollo CEANID, cuyo resultado de los parámetros se detalla a continuación:

) (UNIVERSIDAD AU FACULTAD ENTRO DE ANALISIS, Laboratorio Ofici Red de Laborator Red Nacional d Laborat	UTONOMA "JU DE "CIENCIAS INVESTIGACIO ial del Minister rios Oficiales de le Laboratorios torio Oficial del	AN MISAEL SARACHO' Y TECNOLOGIA" N Y DESARROLLO "CE/ o de Salud y Deporte: Analisis de Alimento de Micronutrientes "SENASAG"	ANID" S		Techs de emisión 2016 1
		INFC	DRME DE I	NSAYO			
		I. INFORM	ACIÓN DEL	SOLICITANTE			
Cliente: Edwin Lopez N	loya						
Solicitante: Edwin Lopez N	loya						
Direccion: Av La Paz s/n -	Barrio	San Bernardo			Code		G 156/17
Telefono/Fax //1///4					Codig	0 ,	136/17
Descripcion de la muestra:	Sol	ución acuosa con sul	fatos metalicos	IN INCOMA			
Codigo de muestreo:		····· Fecha	de vencimient	D: •••••••		Lote: ••	•••
Fecha y hora de muestreo:	201	17-06-06					
Procedencia (Localdad, Prov/ Opto)	Mo	desto Omiste - Poto	si Bolivia				
Responsable de muestreo:	F du	win Lopez Mova					
Codigo de la muestra:	104	18 FQ 805	Fecha d	e recepción de la mu	estra:	20	17-06-13
Cantidad recibida:	250) ml	Fecha d	e ejecución de ensayo):	De 2017-06	5-13 al 2017-06-19
		TECHICA	II. RESULTA	DOS			
PARÁMETRO		MÉTODO DE ENSAYO	UNIDAD	RESULTADOS	LIMITE		REFERENCIA D
Conductividad electrica (14.2°C)	SM 2510-B	u\$/cm	168,7	Sin	Referencia	Sin Referencia
Densidad relativa (20 °C)		NB 34021 07		1,13574	Sin	Referencia	Sin Referencia
Hierro disuelto		SM 3500 Fe B	mg/l	2 2 2 9	Sin	Referencia	Sin Referencia
Magnesio disuelto		SM 3500 MP B	mg/l	354	Sin	Referencia	Sin Referencia
pH (14.2°C)		SM 4500 H B	0	0.47	Sin	Referencia	Sin Referencia
Plomo disuelto		SM 3500 PbB	me/l	4.75	Sin	Referencia	Sin Referenci
Sulfatos		SM 2130 B	¢/l	141.70	Sin	Referencia	Sin Referencia
Zinc disuelto		SM 3500-ZoB	me/l	39 595	Sin	Referencia	Sin Reference
SM Standard Methods		5.11 5500-2110			1 3/1	iscretentia	
NB Norma Boliviana		us Merosemens					
I) Los datos de la muestra y el mue	streo, fu	eron suministrados po Ing Ad	et cliente	a diani Cáceres NID	WISS CE	ANID	AS STAROLO
		C					

Fuente: Centro de Análisis, Investigación y Desarrollo" CEANID" 2017.

PARÁMETROS FISICOQUÍMICOS DEL ELECTROLITO BASE Y DEL ELECTROLITO SOPORTE.

De acuerdo a la concentración que presenta el electrolito base se determina los parámetros adicionales del mismo utilizando las siguientes ecuaciones:

PARAMETRO		PESO MOLECII AR	MOLARIDAD
Sulfato (SO ₄ ²⁻)	141,7	96,07	1,475
Zinc disuelto (Zn ²⁺)	39,595	65,39	0,606

$$I_i = \frac{1}{2} \left[\left(z_+^2 C_+ \right) + \left(z_-^2 C_- \right) \right] \qquad (1 - 6)$$

$$\log \gamma_i = -\frac{Az_+ z_- \sqrt{I_i}}{1 + Ba_i \sqrt{I_i}} \tag{1-5}$$

 $\alpha = \gamma_i C \qquad (1-4)$ $D_i = \frac{uRT}{zF} \qquad (1-20)$

Parámetros adicionales de zinc disuelto.

FUERZA IONICA	COEF. DE ACTIVIDAD	ACTIVIDAD	DIFUSIVIDAD
I _i (mol/l)	Zn	_{Zn} (mol/l)	$D_i (cm^2/s)$
4,1610	0,110	0,067	7,022E-06

Fuente: Elaboración propia, UAJMS 2017.

Parámetros fisicoquímicos de disolución soporte (Anolito)

PARAMETRO	UNIDAD	RESULTADO
Solucion soporte (H ₂ SO ₄)	g/l	121
Temperatura	T (°K)	298
Viscosidad	μ (g/cm s)	0,015
Densidad	(g/cm^3)	1,135
Volumen	$V (cm^3)$	60
Flujo volumétrico	$Q (cm^3/s)$	8

Fuente: Elaboración propia, UAJMS 2017.

CONSTRUCCIÓN DE LOS COMPARTIMENTOS DE LA CELDA ELECTROLÍTICA.

De acuerdo a los valores obtenidos en el dimensionamiento de la celda, se procede a la construcción de dicha celda; utilizando como herramienta un torno metalúrgico.

Torno mecánico para la construcción de la celda electrolítica.

Fuente: Elaboración propia Cortesía Taller Metalúrgica Eyber 2016.

FUNCIONAMIENTO DEL REACTOR EXPERIMENTAL DE OBTENCIÓN ELECTROLÍTICA DE ZINC.

El funcionamiento del reactor experimental se lleva a cabo en el laboratorio de física de la UAJMS.

Monitoreo del funcionamiento del reactor electroquímico.

Fuente: Toma propia, Cortesía Laboratorio de física U.A.J.M.S. 2017.

Los valores de la variación de la concentración a diferentes intervalos de tiempo a la salida del reactor se determinan aplicando un método de ensayo que se detalla a continuación:

Método volumétrico para determinación de zinc en disolución.

En este método se mide el volumen necesario de una disolución de concentración conocido que reacciona cuantitativamente en el componente de la disolución de composición desconocido.

Método de ensayo para determinar el contenido de zinc disuelto.

Fuente: Norma Argentina IRAM 113217. Materias primas para caucho. Óxido de Zinc. Instituto Argentino de Racionalización de Materiales. Buenos Aires, 1985.

Los valores de la variable respuesta que se obtiene durante el funcionamiento del reactor y de acuerdo al diseño factorial; se detalla a continuación:

				DISEÑO FACTO	DRIAL 2^3		
	FAC	FORES EN ESTUDI	0		VARIABLES RESPUEST.	A	1
NUMERO DE ENSAYOS	CORRIENTE ELECTRICA I (A)	TIEMPO DE ELECTRÓLISIS t (s)	CAUDAL Q (cm ³ /s)	SOBREPOTENCIAL DE ELECTR. DE TRABAJO Ŋc (V)	COEFICIENTE DE TRANSFERENCIA DE MASA Km (cm/s)	MASA REAL DEPOSITADO m (g)	EFICIENCIA DE CORRIENTE Πi (%)
1a	1,8	1800	8	-0,023	6,431E-05	0,526	47,944
2a	2	1800	8	-0,053	6,431E-05	0,703	57,669
3 a	1,8	2400	8	-0,033	6,431E-05	0,578	39,511
4a	2	2400	8	-0,053	6,431E-05	1,074	66,010
5a	1,8	1800	12	-0,013	7,351E-05	0,666	60,634
6a	2	1800	12	-0,053	7,351E-05	0,728	59,654
7a	1,8	2400	12	-0,023	7,351E-05	0,755	51,556
8a	2	2400	12	-0,053	7,351E-05	0,800	49,210
	·					•	
1b	1,8	1800	8	-0,013	6,536E-05	0,531	48,399
2b	2	1800	8	-0,053	6,536E-05	0,727	59,580
3b	1,8	2400	8	-0,023	6,536E-05	0,608	41,540
4b	2	2400	8	-0,043	6,536E-05	1,044	64,196
5b	1,8	1800	12	-0,023	7,471E-05	0,679	61,891
6b	2	1800	12	-0,053	7,471E-05	0,742	60,842
7b	1,8	2400	12	-0,013	7,471E-05	0,776	53,025
8b	2	2400	12	-0,053	7,471E-05	0,794	48,823

Resultados obtenidos de cada combinación y su respectiva réplica.

Fuente: Elaboración propia UAJMS 2017.

La masa real electrodepositado que se obtiene experimentalmente durante el funcionamiento del reactor electroquímico se pesa en una balanza analítica, donde el peso total menos el peso del electrodo, es la cantidad real de masa electrodepositado.

$$m_r = m_t - m_e$$

Dónde: $m_r = Masa real electrodepositado[g]$ $m_t = Masa total [g]$ $m_e = Masa del electrodo = 13,334 g$

Balanza analítica para pesar la cantidad de zinc electrodepositado

Fuente: Toma propia, Cortesía Laboratorio de física U.A.J.M.S. 2017.

Una vez obtenido la cantidad electrolítica de zinc con la mejor eficiencia de corriente, se envía al centro de análisis de investigación y desarrollo CEANID perteneciente a la universidad, cuyo resultado de la pureza se detalla a continuación:

INFORMACION DEL SOLICITANTE Liente: Edwin Lopez Moya Solicitante: Edwin Lopez Moya Direccion: Av La Paz 4/n Telefono/fax 27172741 Correore Codigo de muestreo: ******* Descripcion de la muestra: Zinc metakco Codigo de muestreo: ******* Procedencia cuentar Procedencia Conductoria de forcea Responsable de muestreo: Loto: Codigo de muestra: Del 2017 11 0.1 Codigo de la muestra: Del 2017 11 0.1 Codigo de la muestra: Del 2017 11 0.1 Codido de la muestra:		Red Nacional de Laborato	Laboratorio	es de Micronutrient	es V~~		
I. INFORMACION DEL SOLICITANTE Edwin Lope? Moya Solicitate: Edwin Lope? Moya Solicitate: Edwin Lope? Moya Direccion: V La Par y /n Telefono/Far 27177741 Correo e		INFO	RME DE	ENSAYO			
Cliente: Edwin Lopez Moya Solicitarte: Edwin Lopez Moya Divercoio: A La Paz s/n Telefono/Fax 27177741 Correo: Codigo MO 012/17 II. INFORMACIÓN DE LA MUESTRA Descripcion de la muestra: Zinc metalico Codigo de muestreo: 2017 10:31 Procedencia unestreo: 2017 10:31 Procedencia unestreo: Lugar de muestreo: Lugar de muestreo: Lugar de muestreo: Edvin Lopez Moya Codigo de la muestra: 1954 FQ 1492 Fecha de recepción de la muestra: Codigo de la muestra: 1954 FQ 1492 Fecha de muestra: Codigo de la muestra: 1954 FQ 1492 Fecha de muestra: Codigo de la muestra: 1954 FQ 1492 Fecha de muestra: Codigo de la muestra: 1950 FQ 1403 Resourtao: III. RESULTADOS Min, Max. III. RESULTADO DE ENSAYO		I. INFORM	ACIÓN DE	LSOLICITANTE			
Solicitante: tdwin Lopez Moya Direccion: Av La Par s' in Telefono/Fax (27) 27241 Correo-e Descripcion de la muestra: /inc metalico Codigo de muestreo: ************************************	Cliente: Edwin Lopez M	оуа					
Directon: Av La Par S/n Telefon/Kak 27177241 Correo e Codigo MO 012/17 II.INFORMACIÓN DE LA MUESTRA Descripcion de la muestra: Codigo de muestreo: Procedencia una nata tele do construction de la muestra: Codigo de la muestra: Lugar de muestreo: Laboratorio de Fixica Responsable de la muestra: Del 2017-11-01 Cantidad recibida: LIMITES PERMISIBLES REFERENCIA DD LOS LIMITES LOS LUMITES LOS L	Solicitante: Edwin Lopez Mi	руа					
Telefono/Fax 27177241 Correo-e ••••••••••••• Codigo MO 012/17 ILI INFORMACIÓN DE LA MUESTRA Descripcion de la muestra: Line metalaco Codigo de muestreo: •••• Fecha de vencimiento: ••••• Lote: ••••• Fecha y hora de muestreo: 2017-10-31 #••• Fecha de vencimiento: •••••• Lote: ••••• Fecha y hora de muestreo: Laboratorio de fisica # # #**•• #**•• #**•• Godigo de la muestra: 1954 FQ 1492 Fecha de recepción de la muestra: Del 2017-11-01 # ##**** Codigo de la muestra: 1954 FQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 # Cantida recibida: 1.g Fecha de analisis de la muestra: Del 2017-11-01 # # Cantida recibida: 1.g Fecha de analisis de la muestra: Del 2017-11-01 #	Direccion: Av La Pazis/n						
II. INFORMACIÓN DE LA MUESTRA Descripción de la muestra: Zinc metalico Código de muestreo: I conigo de la muestra: I 1954 FQ 1492 Fecha de recepción de la muestra: I 1954 FQ 1492 III. RESULTADOS III. SM 3500 ZnB 95 99.53 Sin Referencia Sin Referencia Sin Referencia Sin Referencia Sin Referencia III. On a muestra ensignada en el caboratorio III. On a muestra y el muestra ensignada en el caboratorio III. On a muestra y el muestra fuendado por el clente III. RESULTADO MINION DE CEANID III. STA SCOLUMINES III. CONTRACIÓN SUBLICA DI CONTRACIÓN SUBLICA DI CONTRACIÓN DE CEANID III. ON CONTRACIÓN SUBLICA DI CONTRACIÓN DE CEANID III. DE CONTRACIÓN SUBLICA DI CONTRACIÓN DE CEANID III. DE CONTRACIÓN SUBLICA DI CON	Telefono/Fax 77177741	Correo-e			Codigo	MO 012/17	
Descripción de la muestra: Line metalico Codigo de muestreo: *** Fecha de vencimiento: ****** Fecha y hora de muestreo: Laboratorio de fisica ****** Responsable de muestreo: Laboratorio de fisica ******* Código de la muestra: 1954 fQ 1492 Fecha de recepción de la muestra: 2017-11-01 Codigo de la muestra: 1954 fQ 1492 Fecha de recepción de la muestra: Del 2017-11-01 Codigo de la muestra: 1954 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Codigo de la muestra: 1954 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Codigo de la muestra: 195 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Codigo de la muestra: 195 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Codigo de la muestra: 195 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Codigo de la muestra: 195 fQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Il concente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID Di los datos de la muestra y el muestrao; fueron summistrados por el cliente Il anya, 17 de noviembre de 2017<		II. INFORM	IACIÓN DE	E LA MUESTRA			
Codigo de muestreo: ** [Fecha de vencimiento: ******* Lote: ******* Fecha y hora de muestreo: 2017-10-31 Procedencia: ************************************	Descripción de la muestra:	Zinc metalico					
Fecha y hora de muestreo: 2017-10-31 Procedencia userant Procedenti Tarrya - Cercado - Tarrya Bolivia Lugar de muestreo: Laboratorio de Fisica Responsable de muestreo: Laboratorio de Fisica Responsable de muestreo: Laboratorio de Fisica Codigo de la muestra: 1954 FQ 1492 Fecha de analisis de la muestra: Del 2017-11-01 Cantidad recibida: 1 g III. RESULTADOS IIIMITES PERMISIBLES REFERENCIA DE UNIDAD REFERENCIA DE UNITES Zinc total SM 3500 2nB II. Sorresultados reportados se remiten a la muestra ensayada en el Laboratorio DI De resoltados reportados se remiten a la muestra ensayada en el Laboratorio DI Los resultados reportados se remiten a la muestra ensayada en el Laboratorio DI Los datos de la muestra, y el muestreo, fueron suministrados por el cliente Tarija, 17 de noviembre de 2017	Codigo de muestreo:	•• Fecha	i de vencimi	ento: ••	Lote:		
Irroceencia isaccha Peologial Ianja - Cercado - Tarja Bolivia Lugar de muestreo: Laboratorio de Fisica Responsable de muestreo: Edivin Lopez Moya Codigo de la muestra: 1954 FQ 1492 Fecha de recepción de la muestra: 2017:11:01 Cantidad recibida: 1 g Fecha de analisis de la muestra: Del 2017:11:01 al 2017:11:12 III. RESULTADOS PARÁMETRO TECNICA y/o MÉTODO UNIDAD RESULTADO Min. Max. LOS LIMITES Zinc total SM 3500 ZnB % 99,53 Sin Referencia Sin Referencia A Barrisch Di Corresultados reportados se remiten a la muestra ensayada en el Laboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Laboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Laboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Laboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados se remiten a la muestra ensayada en el Caboratorio Di Corresultados reportados de la muestra ensayada en el Caboratorio Di Corresultados reportados de la muestra ensayada en el Caboratorio Di Corresultados de la muestra ensayada en el Caboratorio Di Corresultados reportados de la mues	Fecha y hora de muestreo:	2017-10-31					
Laboratorio de Ensca Responsable de muestreo: Edwin Lopez Moya Codigo de la muestra: 1954 f Q 1492 Cantidad recibida: 1g Fecha de análisis de la muestra: Del 2017:11:01 al 2012 11:11 Cantidad recibida: 1g Fecha de análisis de la muestra: Del 2017:11:01 al 2012 11:11 III. RESULTADOS IIIMITES PERMISIBLES REFERENCIA DI DE ENSAVO UNIDAD RESULTADO Min. Max. LOS LIMITES Zinc total SM 3500 2nB SM 3500 2nB 99:53 Sin Referencia Sin Referencia Sin Referencia Sin Referencia Sectors 11:05 resultados reportados se reproducido en forma parcial y/o total, con la autorización del CEANID B) Los datos de la muestra y el muestreo, fueron suministrados por el ciente Tarija, 17 de noviembre de 2017 Maximum Adativação Ing. Albalid Aceitung Cacerey , TEFE DEL CEANID Maximum Sector Maximum Sector Maximum Sector Maximum SecEANID	Procedencia (Local dad Prov) Opto)	Tarija - Cercado - Tarija	Bolivia				
Interstrete: Lowin Lopez Moya Codigo de la muestra: 1954 FQ 1492 Fecha de recepción de la muestra: 2017-11.01 Cantidad recibida: 1 g Ig Fecha de analisis de la muestra: Dei 2017-11.01 al 2017-11.12 ILIN RESULTADOS ILIN RESULTADOS Min. Max. Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan= 2" <td colsp<="" td=""><td>Reconcerable de muestreo:</td><td>Laboratorio de Fisica</td><td></td><td></td><td></td><td></td></td>	<td>Reconcerable de muestreo:</td> <td>Laboratorio de Fisica</td> <td></td> <td></td> <td></td> <td></td>	Reconcerable de muestreo:	Laboratorio de Fisica				
Construction 1951 FQ 1492 Pecha de reception de Indestra. 2017 F1 01 Cantidad recibida: 1 g Pecha de analisis de la muestra: Del 2017 F1 01 al 2017 F1 11 III. RESULTADOS PARÁMETRO TECNICA y/o MÉTODO UNIDAD RESULTADO Min. Max. LOS LIMITES Zinc total SM 3500 ZnB % 99.53 Sin Referencia Sin Referencia No resultados reportados se remiten a la muestra ensayada en el Laboratorio Di So resultados reportados se reproducido en forma parcial y/o total, con la autorización del CEANID B) Los datos de la muestra y el muestra on suministrados por el cliente Tarija, 17 de noviembre de 2017	Responsable de muestreo:	Edwin Lopez Moya		- de coconción do l	a muortra:	2017 11 01	
III, RESULTADOS III, RESULTADOS III, RESULTADOS PARÁMETRO TECNICA y/o MÉTODO UNIDAD RESULTADO Min. Max. LOS LIMITES Zinc total SM 3500 ZnB % 99,53 Sin Referencia Sin Referencia No markato rana Sm 3500 ZnB % 99,53 Sin Referencia Sin Referencia No markato rana Sm 2000 ZnB % 99,53 Sin Referencia Sin Referencia No markato rana Sm 2000 ZnB % 99,53 Sin Referencia Sin Referencia No markato rana Sm 2000 ZnB % 99,53 Sin Referencia Sin Referencia No markato rana Sm 2000 ZnB % 99,53 Sin Referencia Sin Referencia No sciulados reportados se remiten a la muestra ensayada en el Laboratorio Si Epresente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID Si Epresente informe solo puede ser reproducido so por el cliente	Contidod recibido:	1954 FQ 1492	Fech	a de recepción de la		2017-11-01	
PARÁMETRO TECNICA y/o MÉTODO UNIDAD RESULTADO LIMITES PERMISIBLES REFERENCIA DI Zinc total SM 3500 ZnB % 99.53 Sin Referencia Sin Referencia Sta Asima Reversa Sin Sta	cantidad recibida.	118	RESULT		idestra. Dei 2017	11 01 3 2017 11 1	
PARÁMETRO TECNICA y/o MÉTODO UNIDAD RESULTADO Min. Max. REFERENCIA DI Zinc total SM 3500 ZnB % 99.53 Sin Referencia Sin Referencia Maria Burgana Ameria Burgana Sin Referencia Sin Referencia Sin Referencia Maria Burgana Ameria Burgana Sin Referencia Sin Referencia Sin Referencia Maria Burgana Ameria Burgana Sin Referencia Sin Referencia Sin Referencia Maria Burgana Ameria Burgana Sin Referencia Sin Referencia Sin Referencia Maria Burgana Ameria Burgana Ameria Sin Referencia Sin Referencia Maria Burgana Ameria Sin Referencia Sin Referencia Sin Referencia Maria Burgana Ameria Sin Referencia Sin Referencia Sin Referencia Di Statas de la muestra y el muestreo, fueron suministrados por el cliente Sin Statas de la muestra y el muestreo, fueron suministrados por el cliente Sin Esticación de Statas de la Murgana Tarija, 17 de noviembre de 2017 Sin Augurgana Sin Esticación de Statas de S					LIMITES PERMISIBLES		
Zinc total SM 3500 ZnB % 99,53 Sin Referencia Sin Referencia A Minima Beisrana A America D) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio D) Los resultados reportados se remoducido en forma parcial y/o total, con la autorización del CEANID B) Los datos de la muestra y el muestreo, fueron suministrados por el cliente Tarija, 17 de noviembre de 2017 Ing. AGalid Acertuno Caceres , JEFE DEL CEANID SINESTICOCONTRE , JEFE DEL CEANID	PARÁMETRO	TECNICA y/o MÉTODO DE ENSAYO	UNIDAD	RESULTADO	Min. Max.	REFERENCIA D	
As Asima Belinana A Devention 2) Los resultados reportados se remiten a la muestra ensayada en el Laboratorio 2) El presente informe solo puede ser reproducido en forma parcial y/o total, con la autorización del CEANID 2) Los datos de la muestra y el muestro, fueron suministrados por el cliente Tarija, 17 de noviembre de 2017 Ing. Aŭalid Aceituno Caceres , JEEE DELI CEANID 2010 2010 2010 2017 2017	Zectotal	SM 3500 ZnB	%	99.53	Sin Referencia	Sin Referencia	
	enie, lotaf 8. Aorenia: 9. Aorenia: 9. Julos resultados reportados se rem 2) El presente informe solo puede s 3) Los datos de la muestra y el mue	iten a la muestra ensayada el er reproducido en forma parc streo, fueron suministrados p	n el Laborator (al y/o total, c or el cliente	io Ion la autorización de	I CEANID		

Resultado de análisis químico del zinc electrolítico obtenido.

Fuente: Centro de Análisis, Investigación y Desarrollo "CEANID" 2017.

... debes amar el tiempo de los intentos.
debes amar la hora que nunca brilla
y si no, no pretendas tocar lo cierto...